Elworthy, K. D. Fredholm maps in \(GL_ c (E)\)-structures. (English) Zbl 0159.25102 Bull. Am. Math. Soc. 74, 582-586 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 Documents Keywords:topology × Cite Format Result Cite Review PDF Full Text: DOI References: [1] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27 – 31 (English, with Russian summary). · Zbl 0151.17703 [2] Felix E. Browder, Topological methods for non-linear elliptic equations of arbitrary order, Pacific J. Math. 17 (1966), 17 – 31. · Zbl 0166.38102 [3] James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751 – 807. [4] Gerhard Neubauer, Homotopy properties of semi-Fredholm operators in Banach spaces, Math. Ann. 176 (1968), 273 – 301. · Zbl 0163.37602 · doi:10.1007/BF02052889 [5] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861 – 866. · Zbl 0143.35301 · doi:10.2307/2373250 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.