×

zbMATH — the first resource for mathematics

On the boundary values of harmonic functions. (English) Zbl 0159.40501

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II, Proc. Cambridge Philos. Soc. 42 (1946), 1 – 10. · Zbl 0063.00353
[2] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395 – 415 (French). · Zbl 0132.33902
[3] A. P. Calder√≥n, On the behavior of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47-54. · Zbl 0035.18901
[4] Lennart Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393 – 399 (1962). · Zbl 0107.08402 · doi:10.1007/BF02591620 · doi.org
[5] I. G. Petrovsky, Lectures on partial differential equations, Interscience Publishers, New York-London, 1954. Translated by A. Shenitzer. · Zbl 0059.08402
[6] S. Saks, Theory of the integral, Stechert, New York, 1937. · Zbl 0017.30004
[7] Kjell-Ove Widman, On the boundary values of harmonic functions in \?³, Ark. Mat. 5 (1964), 221 – 230 (1964). · Zbl 0132.34002 · doi:10.1007/BF02591124 · doi.org
[8] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.