Browder, F. E. Nonlinear maximal monotone operators in Banach space. (English) Zbl 0159.43901 Math. Ann. 175, 89-113 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 149 Documents Keywords:functional analysis × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Aggeri, J. C., etC. Lescarret: Sur une application de la théorie de la sous-differentiabilité à des fonctions convexes duales associés à un couple d’ensembles mutuellement polaires. (Mimeographed manuscript.) Montpellier 1965. [2] Asplund, E.: Positivity of duality mappings. Bull Am. Math. Soc.73, 200-203 (1967). · Zbl 0149.36202 · doi:10.1090/S0002-9904-1967-11678-1 [3] Beurling, A., andA. E. Livingston: A theorem on duality mappings in Banach spaces. Ark. Math.4, 405-411 (1961). · Zbl 0105.09301 · doi:10.1007/BF02591622 [4] Bronsted, A., andR. T. Rockafellar: On the subdifferentiability of convex functions. Proc. Am. Math. Soc.16, 605-611 (1965). · Zbl 0141.11801 [5] Browder, F. E.: Nonlinear elliptic boundary value problems. Bull. Am. Math. Soc.69, 862-874 (1963). · Zbl 0127.31901 · doi:10.1090/S0002-9904-1963-11068-X [6] ??: Nonlinear elliptic problems, II. Bull. Am. Math. Soc.70, 299-302 (1964). · Zbl 0127.31902 · doi:10.1090/S0002-9904-1964-11134-4 [7] ?? Strongly nonlinear parabolic boundary value problems. Am. J. Math.86, 339-357 (1964). · Zbl 0143.33501 · doi:10.2307/2373169 [8] ?? Nonlinear elliptic boundary value problems, II. Trans. Am. Math. Soc.117, 530-550 (1965). · Zbl 0127.31903 · doi:10.1090/S0002-9947-1965-0173846-9 [9] ?? Nonlinear equations of evolution. Ann. Math.80, 485-523 (1964). · Zbl 0127.33602 · doi:10.2307/1970660 [10] ?? On a theorem of Beurling and Livingston. Canad. J. Math.17, 367-372 (1965). · Zbl 0132.10602 · doi:10.4153/CJM-1965-037-2 [11] ?? Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc.118, 338-351 (1965). · Zbl 0138.39903 · doi:10.1090/S0002-9947-1965-0180884-9 [12] ?? Continuity properties of monotone nonlinear operators in Banach spaces. Bull. Am. Math. Soc.70, 551-553 (1964). · Zbl 0123.10702 · doi:10.1090/S0002-9904-1964-11196-4 [13] ?? Nonlinear initial value problems. Ann. Math.82, 51-87 (1965). · Zbl 0131.13502 · doi:10.2307/1970562 [14] ?? Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc.71, 780-785 (1965). · Zbl 0138.39902 · doi:10.1090/S0002-9904-1965-11391-X [15] ?? Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. Symposia on Appl. Math., Am. Math. Soc.17, 24-49 (1965). [16] ?? Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.54, 337-342 (1965). · Zbl 0133.08101 · doi:10.1073/pnas.54.2.337 [17] ?? Nonlinear functional equations in nonreflexive Banach spaces. Bull. Am. Math. Soc.72, 89-95 (1966). · Zbl 0135.17602 · doi:10.1090/S0002-9904-1966-11432-5 [18] – Problèmes nonlinéaires. 153 pp. Univ. of Montreal Press 1966. [19] ?? On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.56, 419-425 (1966). · Zbl 0143.36902 · doi:10.1073/pnas.56.2.419 [20] ?? Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. U.S.56, 1080-1086 (1966). · Zbl 0148.13502 · doi:10.1073/pnas.56.4.1080 [21] Hartman, P., andG. Stampacchia: On some nonlinear elliptic functional differential equations. Acta. Math.115, 271-310 (1966). · Zbl 0142.38102 · doi:10.1007/BF02392210 [22] Kacurovski, R. I.: On monotone operators and convex functionals. Usp. Mat. Nauk.15, 213-215 (1960). [23] Kato, T.: Demicontinuity, hemicontinuity, and monotonicity. Bull. Am. Math. Soc.70, 548-550 (1964). · Zbl 0123.10701 · doi:10.1090/S0002-9904-1964-11194-0 [24] ?? Nonlinear equations of evolution in Banach spaces. Symposia on Appl. Math., Am. Math. Soc.17, 50-67 (1965). [25] Leray, J., etJ. L. Lions: Quelques resultats de Visik sur les problemes elliptiques nonlinéaires par les methodes de Minty-Browder. Bull. soc. math. France93, 97-107 (1965). [26] Lescarret, C.: Cas d’addition des applications monotones maximales dans un espace de Hilbert. Compt. Rend.261, 1160-1163 (1965). · Zbl 0138.08204 [27] Lions, J. L., etG. Stampacchia: Inequations variationelles noncoercives. Compt. Rend.261, 25-27 (1965). [28] – Variational inequalities. (To appear.) [29] Minty, G. J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J.29, 341-346 (1962). · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2 [30] ??: On the monotonicity of the gradient of a convex function. Pacific. J. Math.14, 243-247 (1964). · Zbl 0123.10601 [31] ?? On a ?monotonicity? method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.50, 1038-1041 (1963). · Zbl 0124.07303 · doi:10.1073/pnas.50.6.1038 [32] ?? A theorem on maximal monotonic sets in Hilbert spaces. J. Math. Anal. and Appl.11, 434-439 (1965). · Zbl 0132.10603 · doi:10.1016/0022-247X(65)90095-8 [33] ?? On the generalization of the direct method of the calculus of variations. Bull. Am. Math. Soc.73, 315-321 (1967). · Zbl 0157.19103 · doi:10.1090/S0002-9904-1967-11732-4 [34] Moreau, J. J.: Fonctionelles sous-differentiables. Compt. Rend.257, 4117-4119 (1963). · Zbl 0137.31401 [35] ?? Proximité et dualité dans un éspace hilbertien. Bull. soc. math. France93, 273-299 (1965). [36] Rockafellar, R. T.: Characterization of the subdifferentials of convex functions. Pacific J. Math.17, 497-510 (1966). · Zbl 0145.15901 [37] Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. Comt. Rend.258, 4413-4416 (1964). · Zbl 0124.06401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.