×

Equivalence of Markov processes. (English) Zbl 0159.46701


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Brelot, Éléments de la théorie classique du potentiel, 3e édition. Les cours de Sorbonne. 3e cycle, Centre de Documentation Universitaire, Paris, 1965. · Zbl 0084.30903
[2] M. Brelot, Lectures on potential theory, Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. Lectures on Mathematics, vol. 19, Tata Institute of Fundamental Research, Bombay, 1960. · Zbl 0098.06903
[3] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. · Zbl 0169.49204
[4] P. Courrège, Fonctionnelles multiplicatives, sous-processus d’un processes de Markov et semi-groupes subordonnés, Séminaire de théorie du potentiel (Brelot-Choquet-Deny), Sixth year, 1961-1962.
[5] Philippe Courrège and Pierre Priouret, Temps d’arrêt d’une fonction aléatoire: Relations d’équivalence associées et propriétés de décomposition, Publ. Inst. Statist. Univ. Paris 14 (1965), 245 – 274 (French).
[6] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86 – 121. · Zbl 0059.12205
[7] E. B. Dynkin, Markov processes, Academic Press, New York, 1965. · Zbl 0132.37901
[8] R. K. Getoor, Additive functionals and excessive functions, Ann. Math. Statist. 36 (1965), 409 – 422. · Zbl 0138.11401
[9] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[10] G. A. Hunt, Markoff processes and potentials. III, Illinois J. Math. 2 (1958), 151 – 213.
[11] Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965.
[12] P.-A. Meyer, Decomposition of supermartingales: the uniqueness theorem, Illinois J. Math. 7 (1963), 1 – 17. · Zbl 0133.40401
[13] -, Probability and potentials, Blaisdell, Waltham, Mass., 1966. · Zbl 0138.10401
[14] Jacques Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 (French). · Zbl 0137.11203
[15] L. A. Shepp, Radon-Nikodým derivatives of Gaussian measures, Ann. Math. Statist. 37 (1966), 321 – 354. · Zbl 0142.13901
[16] A. V. Skorokhod, On the differentiability of measures which correspond to stochastic processes, Theor. Probability Appl. 5 (1960), 40-49.
[17] Исследования по теории случайных процессов (Стохастические дифференциал\(^{\приме}\)ные уравнения и предел\(^{\приме}\)ные теоремы для процессов Маркова), Издат. Киев. Унив., Киев, 1961 (Руссиан). А. В. Скороход, Студиес ин тхе тхеоры оф рандом процессес, Транслатед фром тхе Руссиан бы Сцрипта Течница, Инц, Аддисон-Щеслеы Публишинг Цо., Инц., Реадинг, Масс., 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.