×

Some constitutive equations for liquid crystals. (English) Zbl 0159.57101


Keywords:

fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brown, G.H., & W.G. Shaw, The mesomorphic state, liquid crystals. Chem. Rev. 57, 1049–1157 (1957).
[2] Oseen, C.W., Die anisotropen Flüssigkeiten. Tatsachen und Theorien. Forts. Chemie, Phys. und Phys. Chemie 20, 25–113 (1929).
[3] Frank, F.C., On the theory of liquid crystals. Discussions Faraday Soc. 25, 19–28 (1958).
[4] Ericksen, J.L., Hydrostatic theory of liquid crystals. Arch. Rational Mech. Anal. 9, 371–378 (1962). · Zbl 0105.23403
[5] Anzelius, A., Bewegung der anisotropen Flüssigkeiten. Uppsala Univ. Arsskr., Mat. och Naturvet, 1 (1931). · JFM 58.1317.04
[6] Oseen, C.W., The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933). · Zbl 0008.04203
[7] Duhem, P., Le potentiel thermodynamique et la pression hydrostatique. Ann. Ecole Norm. (3) 10, 183–230 (1893). · JFM 25.1778.02
[8] Ericksen, J.L., Anisotropic fluids. Arch. Rational Mech. Anal. 4, 231–237 (1960). · Zbl 0093.18002
[9] Ericksen, J.L., Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961).
[10] Leslie, F.M., Some constitutive equations for anisotropic fluids. Quart. J. Mech. Appl. Math. 19, 357–370 (1966). · Zbl 0148.20504
[11] Coleman, B.D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963). · Zbl 0113.17802
[12] Müller, I., On the entropy inequality. Arch. Rational Mech. Anal. 26, 118–141 (1967). · Zbl 0163.46701
[13] Ericksen, J.L., Transversely isotropic liquids. Kolloidzeitschrift 173, 117–122 (1960).
[14] Porter, R.S., & J.F. Johnson, Orientation of nematic mesophases. J. Phys. Chem. 66, 1826–1829 (1962).
[15] Saupe, A., Die Biegungselastizität der nematischen Phase von Azoxyanisol. Z. Naturforschg. 15a, 815–822 (1960).
[16] Miesowicz, M., The three coefficients of viscosity of anisotropic liquids. Nature 158, 27 (1946).
[17] Ericksen, J.L., Some magnetohydrodynamic effects in liquid crystals. Arch. Rational Mech. Anal. 23, 266–275 (1966). · Zbl 0163.20801
[18] Green, A.E., P.M. Naghdi, & R.S. Rivlin, Directors and multipolar displacements in continuum mechanics. Int. J. Engng. Sci. 2, 611–620 (1965). · Zbl 0131.21803
[19] Beatty, M.F., On the foundation principles of general classical mechanics. Arch. Rational Mech. Anal. 24, 264–273 (1967). · Zbl 0163.18501
[20] Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Handbuch der Physik m/3. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0779.73004
[21] Green, A.E., & R.S. Rivlin, The relation between director and multipolar theories in continuum mechanics. Z. ang. Math. Phys. 18, 208–218 (1967). · Zbl 0158.21306
[22] Smith, G.F., On isotropic integrity bases. Arch. Rational Mech. Anal. 18, 282–292 (1965). · Zbl 0129.00902
[23] Ericksen, J.L., Inequalities in liquid crystal theory. Phys. of Fluids 9, 1205–1207 (1966).
[24] Peter, S., & H. Peters, Über die Strukturviskosität des kristallin-flüssigen p-p’-Azoxyanisols. Z. Phys. Chemie (N.F.) 3, 103–125 (1955).
[25] Porter, R.S., E.M. Barrall, II, & J.F. Johnson, Some flow characteristics of mesophase types. J. Chem. Phys. 45, 1452–1456 (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.