×

zbMATH — the first resource for mathematics

On the existence of a local Hamiltonian in the Galilean invariant Lee Model. (English) Zbl 0159.59902

Keywords:
quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Levy-Leblond, J. M.: Commun. Math. Phys.4, 157 (1967). · Zbl 0163.22104 · doi:10.1007/BF01645427
[2] Bargmann, V.: Ann. Math.59, 1 (1954). · Zbl 0055.10304 · doi:10.2307/1969831
[3] Lee, T. P.: Phys. Rev.95, 1329 (1954). · Zbl 0058.23204 · doi:10.1103/PhysRev.95.1329
[4] Källén, G., andW. Pauli: Dan. Mat. Fys. Medd.30, Nr. 7 (1955).
[5] Pagnamenta, A.: J. Math. Phys.6, 955 (1965);7, 356 (1966). · Zbl 0133.23402 · doi:10.1063/1.1704355
[6] Kenschaft, R. P., andR. D. Amado: J. Math. Phys.5, 1340 (1964). · Zbl 0119.31001 · doi:10.1063/1.1704244
[7] Sommerfield, C. M.: J. Math. Phys.6, 1170 (1965). · Zbl 0128.46105 · doi:10.1063/1.1704386
[8] Kazes, E.: J. Math. Phys.6, 1772 (1965). · doi:10.1063/1.1704722
[9] Maxon, M. S., andR. B. Curtis: Phys. Rev.137, 996 (1965). · doi:10.1103/PhysRev.137.B996
[10] – University of California preprint UCRL-14820 (1966).
[11] Goldberger, M. L., andS. B. Treiman: Phys. Rev.113, 1636 (1959). · Zbl 0086.43201 · doi:10.1103/PhysRev.113.1663
[12] De Celles, P., andO. Feldmann: Nucl. Phys.14, 517 (1960). · Zbl 0089.21901 · doi:10.1016/0029-5582(60)90470-3
[13] Amado, R. D.: Phys. Rev.122, 696 (1961). · Zbl 0098.20401 · doi:10.1103/PhysRev.122.696
[14] Hamermesh, M.: Ann. Phys.9, 518 (1960). · doi:10.1016/0003-4916(60)90106-8
[15] Levy-Leblond, J. M.: J. Math. Phys.4, 776 (1963). · Zbl 0122.22302 · doi:10.1063/1.1724319
[16] Schrader, R.: Diplomarbeit, Hamburg (1964); unpublished.
[17] Kato, T.: Trans. Am. Math. Soc.70, 195 (1951).
[18] Haag, R.: Phys. Rev.112, 669 (1958). · Zbl 0085.43602 · doi:10.1103/PhysRev.112.669
[19] Ruelle, D.: Helv. Phys. Acta35, 147 (1962).
[20] Faddeev, L. D.: Mathematical aspects of the threebody problem in the quantum scattering theory (Transl. f. russian). Israel program for scientific translations, Jerusalem, 1965.
[21] Weinberg, S.: Phys. Rev.133B, 232 (1964).
[22] Hille, E., andR. S. Phillips: Functional analysis and semigroups. Providence: Am. Math. Soc. 1957.
[23] Dunford, N., andJ. T. Schwartz: Linear operators I., II. New York: Interscience 1963. · Zbl 0128.34803
[24] Vaughn, M. F.: Nuovo Cimento40, 803 (1965). · doi:10.1007/BF02855985
[25] Hunziker, W.: Helv. Phys. Acta39, 451 (1966).
[26] Albeverio, S., W. Hunziker, W. Schneider, andR. Schrader: Helv. Phys. Acta40, 745 (1967).
[27] Nelson, E.: J. Math. Phys.5, 1190 (1964). · doi:10.1063/1.1704225
[28] Yakubowski, O. A.: Nuclear physics (in Russian)5, 1312 (1967).
[29] Levy, M.: Nuovo Cimento13, 115 (1959). · Zbl 0086.43003 · doi:10.1007/BF02727534
[30] Achieser, N. I., andI. M. Glasmann: Theorie der lin. Operatoren im Hilbertraum (Transl. f. russian). Berlin: Akademie Verlag 1965. · Zbl 0056.11101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.