×

zbMATH — the first resource for mathematics

Orthogonal spline collocation methods for partial differential equations. (English) Zbl 0971.65105
An overview of the applications of orthonormal spline collocation to elliptic, parabolic and hyperbolic (besides Schrödinger type) partial differential equations, as well as to parabolic and hyperbolic partial integro-differential equations (considering two space variables) is presented.

MSC:
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
45K05 Integro-partial differential equations
35J25 Boundary value problems for second-order elliptic equations
35K15 Initial value problems for second-order parabolic equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
35L15 Initial value problems for second-order hyperbolic equations
65R20 Numerical methods for integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Aitbayev, B. Bialecki, Orthogonal spline collocation for quasilinear elliptic Dirichlet boundary value problems, SIAM J. Numer. Anal., to appear. · Zbl 0986.65114
[2] A. Aitbayev, B. Bialecki, A preconditioned conjugate gradient method for orthogonal spline collocation problems for linear, non-selfadjoint, indefinite boundary value problems, preprint. · Zbl 1050.65115
[3] Amodio, P.; Cash, J.R.; Roussos, G.; Wright, R.W.; Fairweather, G.; Gladwell, I.; Kraut, G.L.; Paprzycki, M., Almost block diagonal linear systems: sequential and parallel solution techniques, and applications, Numer. linear algebra appl., 7, 275-317, (2000) · Zbl 1051.65018
[4] Archer, D., An O(h4) cubic spline collocation method for quasilinear parabolic equations, SIAM J. numer. anal., 14, 620-637, (1977) · Zbl 0366.65054
[5] V.K. Bangia, C. Bennett, A. Reynolds, R. Raghavan, G. Thomas, Alternating direction collocation methods for simulating reservoir performance, Paper SPE 7414, 53rd SPE Fall Technical Conference and Exhibition, Houston, Texas, 1978.
[6] K.R. Bennett, Parallel collocation methods for boundary value problems, Ph.D. Thesis, University of Kentucky, 1991.
[7] Bialecki, B., An alternating direction implicit method for orthogonal spline collocation linear systems, Numer. math., 59, 413-429, (1991) · Zbl 0738.65021
[8] Bialecki, B., A fast domain decomposition Poisson solver on a rectangle for Hermite bicubic orthogonal spline collocation, SIAM J. numer. anal., 30, 425-434, (1993) · Zbl 0774.65080
[9] Bialecki, B., Cyclic reduction and FACR methods for piecewise Hermite bicubic orthogonal spline collocation, Numer. algorithms, 8, 167-184, (1994) · Zbl 0817.65093
[10] Bialecki, B., Preconditioned Richardson and minimal residual iterative methods for piecewise Hermite bicubic orthogonal spline collocation equations, SIAM J. sci. comput., 15, 668-680, (1994) · Zbl 0810.65107
[11] Bialecki, B., Convergence analysis of orthogonal spline collocation for elliptic boundary value problems, SIAM J. numer. anal., 35, 617-631, (1998) · Zbl 0955.65077
[12] Bialecki, B., Superconvergence of orthogonal spline collocation in the solution of Poisson’s equation, Numer. methods partial differential equations, 15, 285-303, (1999) · Zbl 0935.65123
[13] B. Bialecki, Piecewise Hermite bicubic orthogonal spline collocation for Poisson’s equation on a disk, preprint. · Zbl 0774.65080
[14] B. Bialecki, A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles, preprint. · Zbl 1032.65134
[15] Bialecki, B.; Cai, X.-C., H1-norm error estimates for piecewise Hermite bicubic orthogonal spline collocation schemes for elliptic boundary value problems, SIAM J. numer. anal., 31, 1128-1146, (1994) · Zbl 0809.65107
[16] B. Bialecki, X.-C. Cai, M. Dryja, G. Fairweather, An additive Schwarz algorithm for piecewise Hermite bicubic orthogonal spline collocation, Proceedings of the Sixth International Conference on Domain Decomposition Methods in Science and Engineering, Contemporary Mathematics, Vol. 157, American Mathematical Society, Providence, RI, 1994, pp. 237-244. · Zbl 0798.65105
[17] Bialecki, B.; Dillery, D.S., Fourier analysis of Schwarz alternating methods for piecewise Hermite bicubic orthogonal spline collocation, Bit, 33, 634-646, (1993) · Zbl 0792.65021
[18] Bialecki, B.; Dryja, M., Multilevel additive and multiplicative methods for orthogonal spline collocation problems, Numer. math., 77, 35-58, (1997) · Zbl 0881.65104
[19] B. Bialecki, M. Dryja, A domain decomposition method for orthogonal spline collocation, preprint. · Zbl 1055.65139
[20] Bialecki, B.; Fairweather, G., Matrix decomposition algorithms for separable elliptic boundary value problems in two dimensions, J. comput. appl. math., 46, 369-386, (1993) · Zbl 0781.65031
[21] Bialecki, B.; Fairweather, G., Matrix decomposition algorithms in orthogonal spline collocation for separable elliptic boundary value problems, SIAM J. sci. comput., 16, 330-347, (1995) · Zbl 0820.65009
[22] Bialecki, B.; Fairweather, G.; Bennett, K.R., Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations, SIAM J. numer. anal., 29, 156-173, (1992) · Zbl 0752.65076
[23] Bialecki, B.; Fairweather, G.; Remington, K.A., Fourier methods for piecewise Hermite bicubic orthogonal spline collocation, East – west J. numer. math., 2, 1-20, (1994) · Zbl 0805.65107
[24] Bialecki, B.; Fernandes, R.I., Orthogonal spline collocation Laplace-modified and alternating-direction collocation methods for parabolic problems on rectangles, Math. comp., 60, 545-573, (1993) · Zbl 0779.65063
[25] Bialecki, B.; Fernandes, R.I., An orthogonal spline collocation alternating direction implicit crank – nicolson method for linear parabolic problems on rectangles, SIAM J. numer. anal., 36, 1414-1434, (1999) · Zbl 0955.65073
[26] B. Bialecki, R.I. Fernandes, An orthogonal spline collocation alternating direction implicit method for linear second order hyperbolic problems on rectangles, preprint. · Zbl 0955.65073
[27] B. Bialecki, R.I. Fernandes, An orthogonal spline collocation alternating direction implicit Crank-Nicolson method for nonlinear parabolic problems on rectangular polygons, preprint. · Zbl 0955.65073
[28] Bialecki, B.; Remington, K.A., Fourier matrix decomposition method for least squares solution of singular Neumann and periodic Hermite bicubic collocation problems, SIAM J. sci. comput., 16, 431-451, (1995) · Zbl 0818.65102
[29] Bjørstad, P.E., Fast numerical solution of the biharmonic Dirichlet problem on rectangles, SIAM J. numer. anal., 20, 59-71, (1983) · Zbl 0561.65077
[30] C. de Boor, The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines, Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, 1966.
[31] de Boor, C., A practical guide to splines, applied mathematical sciences, vol. 27, (1978), Springer New York
[32] de Boor, C.; Swartz, B., Collocation at Gauss points, SIAM J. numer. anal., 10, 582-606, (1973) · Zbl 0232.65065
[33] J.F. Botha, M. Celia, The alternating direction collocation approximation, Proceedings of the Eighth South African Symposium on Numerical Mathematics, Durban, South Africa, July 1982, pp. 13-26. · Zbl 0532.65077
[34] Bottcher, C.; Strayer, M.R., The basis spline method and associated techniques, (), 217-240
[35] Bottcher, C.; Strayer, M.R., Spline methods for conservation equations, (), 317-338
[36] Celia, M.A.; Ahuja, L.R.; Pinder, G.F., Orthogonal collocation and alternating-direction methods for unsaturated flow, Adv. water resour., 10, 178-187, (1987)
[37] Celia, M.A.; Pinder, G.F., Collocation solution of the transport equation using a locally enhanced alternating direction formulation, (), 303-320 · Zbl 0544.65081
[38] Celia, M.A.; Pinder, G.F., An analysis of alternating-direction methods for parabolic equations, Numer. methods partial differential equations, 1, 57-70, (1985) · Zbl 0634.65098
[39] Celia, M.A.; Pinder, G.F., Generalized alternating-direction collocation methods for parabolic equations. I. spatially varying coefficients, Numer. methods partial differential equations, 6, 193-214, (1990) · Zbl 0705.65073
[40] Celia, M.A.; Pinder, G.F., Generalized alternating-direction collocation methods for parabolic equations. II. transport equations with application to seawater intrusion problems, Numer. methods partial differential equations, 6, 215-230, (1990) · Zbl 0705.65074
[41] Celia, M.A.; Pinder, G.F., Generalized alternating-direction collocation methods for parabolic equations. III. nonrectangular domains, Numer. methods partial differential equations, 6, 231-243, (1990) · Zbl 0705.65075
[42] Celia, M.A.; Pinder, G.F.; Hayes, L.J., Alternating-direction collocation solution to the transport equation, (), 336-348
[43] Cerutti, J.H.; Parter, S.V., Collocation methods for parabolic partial differential equations in one space dimension, Numer. math., 26, 227-254, (1976) · Zbl 0362.65094
[44] Christara, C.C., Schur complement preconditioned conjugate gradient methods for spline collocation equations, Comput. architecture news, 18, 108-120, (1990)
[45] Christara, C.C., Quadratic spline collocation methods for elliptic partial differential equations, Bit, 34, 33-61, (1994) · Zbl 0815.65118
[46] Christara, C.C., Parallel solvers for spline collocation equations, Adv. eng. software, 27, 71-89, (1996)
[47] Christara, C.C.; Smith, B., Multigrid and multilevel methods for quadratic spline collocation, Bit, 37, 781-803, (1997) · Zbl 0898.65081
[48] Ciarlet, P.G.; Raviart, P.A., A mixed finite element method for the biharmonic equation, (), 125-145 · Zbl 0337.65058
[49] A. Constas, Fast Fourier transform solvers for quadratic spline collocation, M.Sc. Thesis, Department of Computer Science, University of Toronto, 1996.
[50] Cooper, K.D., Domain-embedding alternating direction method for linear elliptic equations on irregular regions using collocation, Numer. methods partial differential equations, 9, 93-106, (1993) · Zbl 0764.65069
[51] Cooper, K.D.; McArthur, K.M.; Prenter, P.M., Alternating direction collocation for irregular regions, Numer. methods partial differential equations, 12, 147-159, (1996) · Zbl 0857.65123
[52] Cooper, K.D.; Prenter, P.M., A coupled double splitting ADI scheme for first biharmonic using collocation, Numer. methods partial differential equations, 6, 321-333, (1990) · Zbl 0715.65085
[53] Cooper, K.D.; Prenter, P.M., Alternating direction collocation for separable elliptic partial differential equations, SIAM J. numer. anal., 28, 711-727, (1991) · Zbl 0737.65084
[54] Curran, M.C.; Allen III, M.B., Parallel computing for solute transport models via alternating direction collocation, Adv. water resour., 13, 70-75, (1990)
[55] Daniel, J.W.; Swartz, B.K., Extrapolated collocation for two-point boundary value problems using cubic splines, J. inst. math. appl., 16, 161-174, (1975) · Zbl 0402.65051
[56] Diaz, J.C.; Fairweather, G.; Keast, P., FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM trans. math. software, 9, 358-375, (1983) · Zbl 0516.65013
[57] Diaz, J.C.; Fairweather, G.; Keast, P., Algorithm 603 COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM trans. math. software, 9, 376-380, (1983) · Zbl 0516.65013
[58] D.S. Dillery, High order orthogonal spline collocation schemes for elliptic and parabolic problems, Ph.D. Thesis, University of Kentucky, 1994.
[59] Douglas, J., A superconvergence result for the approximate solution of the heat equation by a collocation method, (), 475-490
[60] Douglas, J.; Dupont, T., Alternating direction Galerkin methods on rectangles, (), 133-214
[61] Douglas, J.; Dupont, T., A finite element collocation method for the heat equation, Ist. nazionale alta mat. symp. math., 10, 403-410, (1972)
[62] Douglas, J.; Dupont, T., A finite element collocation method for quasilinear parabolic equations, Math. comp., 27, 17-28, (1973) · Zbl 0256.65050
[63] Douglas, J.; Dupont, T., Collocation methods for parabolic equations in a single space variable, Lecture notes in mathematics, Vol. 385, (1974), Springer New York
[64] Dyksen, W.R., Tensor product generalized ADI methods for separable elliptic problems, SIAM J. numer. anal., 24, 59-76, (1987) · Zbl 0625.65102
[65] Dyksen, W.R., A tensor product generalized ADI method for the method of planes, Numer. methods partial differential equations, 4, 283-300, (1988) · Zbl 0663.65107
[66] Edoh, K.D.; Russell, R.D.; Sun, W., Computation of invariant tori by orthogonal collocation, Appl. numer. math., 32, 273-289, (2000) · Zbl 0962.65105
[67] Fairweather, G., Spline collocation methods for a class of hyperbolic partial integro-differential equations, SIAM J. numer. anal., 31, 444-460, (1994) · Zbl 0814.65137
[68] G. Fairweather, K.R. Bennett, B. Bialecki, Parallel matrix decomposition algorithms for separable elliptic boundary value problems, in: B.J. Noye, B.R. Benjamin, L.H. Colgan (Eds.), Computational Techniques and Applications: CTAC-91, Proceedings of the 1991 International Conference on Computational Techniques and Applications Adelaide, South Australia, July 1991, Computational Mathematics Group, Australian Mathematical Society, 1992, pp. 63-74.
[69] G. Fairweather, A. Karageorghis, Matrix decomposition algorithms for modified cubic spline collocation for separable elliptic boundary value problems. I. Helmholtz problems, Technical Report 01/2000, Department of Mathematics and Statistics, University of Cyprus, 2000.
[70] Fairweather, G.; Meade, D., A survey of spline collocation methods for the numerical solution of differential equations, (), 297-341
[71] Fernandes, R.I., Efficient orthogonal spline collocation methods for solving linear second order hyperbolic problems on rectangles, Numer. math., 77, 223-241, (1997) · Zbl 0883.65077
[72] Fernandes, R.I.; Fairweather, G., Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. methods partial differential equations, 9, 191-211, (1993) · Zbl 0768.65067
[73] Golub, G.H.; Van Loan, C.F., Matrix computations, (1996), The Johns Hopkins University Press, Baltimore Maryland · Zbl 0865.65009
[74] Grabarski, A., The collocation method for the quasi-linear elliptic equation of second order, Demonstratio math., 29, 431-447, (1986) · Zbl 0632.65116
[75] Grabarski, A., The collocation method for a quasi-linear parabolic equation in two space variables, Demonstratio math., 29, 831-839, (1986) · Zbl 0636.65123
[76] Greenwell-Yanik, C.E.; Fairweather, G., Analyses of spline collocation methods form parabolic and hyperbolic problems in two space variables, SIAM J. numer. anal., 23, 282-296, (1986) · Zbl 0595.65122
[77] Hadjidimos, A.; Houstis, E.N.; Rice, J.R.; Vavalis, E., Iterative line cubic spline collocation methods for elliptic partial differential equations in several dimensions, SIAM J. sci. statist. comput., 14, 715-734, (1993) · Zbl 0776.65063
[78] Hadjidimos, A.; Houstis, E.N.; Rice, J.R.; Vavalis, E., Analysis of iterative line spline collocation methods for elliptic partial differential equations, SIAM J. matrix anal. appl., 21, 508-521, (1999) · Zbl 0947.65122
[79] Hadjidimos, A.; Saridakis, Y.G., Modified successive overrelaxation (MSOR) and equivalent 2-step iterative methods for collocation matrices, J. comput. appl. math., 42, 375-393, (1992) · Zbl 0760.65031
[80] Hayes, L.J., An alternating-direction collocation method for finite element approximation on rectangles, Comput. math. appl., 6, 45-50, (1980) · Zbl 0441.65084
[81] Hayes, L.J., A comparison of alternating-direction collocation methods for the transport equation, (), 169-177 · Zbl 0463.65076
[82] Hayes, L.J.; Pinder, G.F.; Celia, M., Alternating-direction collocation for rectangular regions, Comput. methods appl. mech. eng., 27, 265-277, (1981) · Zbl 0468.65061
[83] Houstis, E.N., Application of method of collocation on lines for solving nonlinear hyperbolic problems, Math. comp., 31, 443-456, (1977) · Zbl 0358.65099
[84] Houstis, E.N., Collocation methods for linear elliptic problems, Bit, 18, 301-310, (1978) · Zbl 0397.65076
[85] Houstis, E.N.; Christara, C.C.; Rice, J.R., Quadratic-spline collocation methods for two-point boundary value problems, Internat. J. numer. methods eng., 26, 935-952, (1988) · Zbl 0654.65057
[86] Houstis, E.N.; Mitchell, W.F.; Rice, J.R., Collocation software for second-order elliptic partial differential equations, ACM trans. math. software, 11, 379-412, (1985) · Zbl 0584.65075
[87] Houstis, E.N.; Mitchell, W.F.; Rice, J.R., Algorithm GENCOL: collocation on general domains with bicubic Hermite polynomials, ACM trans. math. software, 11, 413-415, (1985)
[88] Houstis, E.N.; Mitchell, W.F.; Rice, J.R., Algorithms INTCOL and HERMCOL: collocation on rectangular domains with bicubic Hermite polynomials, ACM trans. math. software, 11, 416-418, (1985)
[89] Houstis, E.N.; Rice, J.R.; Vavalis, E.A., Parallelization of a new class of cubic spline collocation methods, (), 167-174 · Zbl 0637.65113
[90] Houstis, E.N.; Vavalis, E.A.; Rice, J.R., Convergence of O(h4) cubic spline collocation methods for elliptic partial differential equations, SIAM J. numer. anal., 25, 54-74, (1988) · Zbl 0637.65113
[91] Irodotou-Ellina, M.; Houstis, E.N., An O(h6) quintic spline collocation method for fourth order two-point boundary value problems, Bit, 28, 288-301, (1988) · Zbl 0651.65063
[92] Keast, P.; Muir, P.H., Algorithm 688: EPDCOL: a more efficient PDECOL code, ACM trans. math. software, 17, 153-166, (1991) · Zbl 0900.65270
[93] Kegley, D.R.; Oberacker, V.E.; Strayer, M.R.; Umar, A.S.; Wells, J.C., Basis spline collocation method for solving the Schrödinger equation in axillary symmetric systems, J. comput. phys., 128, 197-208, (1996) · Zbl 0859.65084
[94] Keller, H.B., Approximate methods for nonlinear problems with application to two-point boundary value problems, Math. comp., 29, 464-474, (1975) · Zbl 0308.65039
[95] Kim, H.O.; Kim, S.D.; Lee, Y.H., Finite difference preconditioning cubic spline collocation method of elliptic equations, Numer. math., 77, 83-103, (1997) · Zbl 0879.65072
[96] Kim, S.; Kim, S., Estimating convergence factors of Schwarz algorithms for orthogonal spline collocation method, Bull. Korean math. soc., 36, 363-370, (1999) · Zbl 0935.65124
[97] Kim, S.D., Preconditioning cubic spline collocation discretization by P1 finite element method on an irregular mesh, Kyungpook math. J., 35, 619-631, (1996) · Zbl 0991.65121
[98] Kim, S.D.; Parter, S.V., Preconditioning cubic spline collocation discretizations of elliptic equations, Numer. math., 72, 39-72, (1995) · Zbl 0844.65086
[99] Lai, Y.-L.; Hadjidimos, A.; Houstis, E.N., A generalized Schwarz splitting method based on Hermite collocation for elliptic boundary value problems, Appl. numer. math., 21, 265-290, (1996) · Zbl 0879.65073
[100] Lai, Y.-L.; Hadjidimos, A.; Houstis, E.N.; Rice, J.R., General interior Hermite collocation methods for second order elliptic partial differential equations, Appl. numer. math., 16, 183-200, (1994) · Zbl 0817.65092
[101] Lai, Y.-L.; Hadjidimos, A.; Houstis, E.N.; Rice, J.R., On the iterative solution of Hermite collocation equations, SIAM J. matrix anal. appl., 16, 254-277, (1995) · Zbl 0821.65069
[102] Lee, Y.H., Numerical solution of linear elasticity by preconditioning cubic spline collocation, Comm. Korean math. soc., 11, 867-880, (1996) · Zbl 0969.74614
[103] Li, B.; Fairweather, G.; Bialecki, B., Discrete-time orthogonal spline collocation methods for Schrödinger equations in two space variables, SIAM J. numer. anal., 35, 453-477, (1998) · Zbl 0911.65095
[104] Li, B.; Fairweather, G.; Bialecki, B., A crank – nicolson orthogonal spline collocation method for vibration problems, Appl. numer. math., 33, 299-306, (2000) · Zbl 0994.74081
[105] B. Li, G. Fairweather, B. Bialecki, Discrete-time orthogonal spline collocation methods for vibration problems, Technical Report 00-05, Dept. of Mathematical and Computer Sciences, Colorado School of Mines, 2000. · Zbl 1028.74022
[106] Lou, Z.-M.; Bialecki, B.; Fairweather, G., Orthogonal spline collocation methods for biharmonic problems, Numer. math., 80, 267-303, (1998) · Zbl 0908.65103
[107] Madsen, N.K.; Sincovec, R.F., Algorithm 540. PDECOL: general collocation software for partial differential equations, ACM trans. math. software, 5, 326-351, (1979) · Zbl 0426.35005
[108] Majaess, F.; Keast, P.; Fairweather, G., Packages for solving almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions, (), 47-58
[109] Majaess, F.; Keast, P.; Fairweather, G., The solution of almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions, ACM trans. math. software, 18, 193-204, (1992) · Zbl 0892.65050
[110] Majaess, F.; Keast, P.; Fairweather, G.; Bennett, K.R., Algorithm 704: ABDPACK and ABBPACK - FORTRAN programs for the solution of almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions, ACM trans. math. software, 18, 205-210, (1992) · Zbl 0892.65051
[111] Manickam, A.V.; Moudgalya, K.M.; Pani, A.K., Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto-Sivashinsky equation, Comput. math. appl., 35, 5-25, (1998) · Zbl 0907.65098
[112] Manickam, S.A.V.; Pani, A.K.; Chung, S.K., A second-order splitting combined with orthogonal cubic spline collocation method for the rosenau equation, Numer. methods partial differential equations, 14, 695-716, (1998) · Zbl 0930.65111
[113] G. Mateescu, C.J. Ribbens, L.T. Watson, A domain decomposition algorithm for collocation problems, preprint. · Zbl 1017.65094
[114] McLean, W.; Thomée, V., Numerical solution of an evolution equation with a positive type memory term, J. austral. math. soc. ser. B, 35, 23-70, (1993) · Zbl 0791.65105
[115] Mu, M.; Rice, J.R., An experimental performance analysis of the rate of convergence of collocation on general domains, Numer. methods partial differential equations, 5, 45-52, (1989) · Zbl 0667.65092
[116] Nokonechny, T.B.; Keast, P.; Muir, P.H., A method of lines package, based on monomial spline collocation, for systems of one-dimensional parabolic differential equations, (), 207-223
[117] Percell, P.; Wheeler, M.F., A C1 finite element collocation method for elliptic equations, SIAM J. numer. anal., 12, 605-622, (1980) · Zbl 0532.65076
[118] Plagne, L.; Berthou, J.-Y., Tensorial basis spline collocation method for Poisson’s equation, J. comput. phys., 157, 419-440, (2000) · Zbl 0946.65117
[119] Pozo, R.; Remington, K., Fast three-dimensional elliptic solvers on distributed network clusters, (), 201-208
[120] Prenter, P.M.; Russell, R.D., Orthogonal collocation for elliptic partial differential equations, SIAM J. numer. anal., 13, 923-939, (1976) · Zbl 0366.65052
[121] Rice, J.R.; Boisvert, R.F., Solving elliptic problems using ELLPACK, (1985), Springer New York · Zbl 0562.65064
[122] M.P. Robinson, Orthogonal spline collocation solution of nonlinear Schrödinger equations, Mathematics of Computation 1943-1993: a Half-Century of Computational Mathematics, Vancouver, BC, 1993, Proceedings of Symposium on Applied Mathematics, Vol. 48, American Mathematical Society, Providence RI, 1994, pp. 355-360.
[123] M.P. Robinson, The solution of nonlinear Schrödinger equations using orthogonal spline collocation, Comput. Math. Appl. 33 (1997) 39-57. [Corrigendum: Comput. Math. Appl. 35 (1998) 151.] · Zbl 0872.65092
[124] Robinson, M.P.; Fairweather, G., Orthogonal cubic spline collocation solution of underwater acoustic wave propagation problems, J. comput. acoust., 1, 355-370, (1993) · Zbl 1360.76291
[125] Robinson, M.P.; Fairweather, G., An orthogonal spline collocation method for the numerical solution of underwater acoustic wave propagation problems, (), 339-353
[126] Robinson, M.P.; Fairweather, G., Orthogonal spline collocation methods for Schrödinger-type equations in one space variable, Numer. math., 68, 355-376, (1994) · Zbl 0806.65123
[127] Russell, R.D.; Sun, W., Spline collocation differentiation matrices, SIAM J. numer. anal., 34, 2274-2287, (1997) · Zbl 0888.65120
[128] Saied, F.; Holst, M.J., Multigrid methods for computational acoustics on vector and parallel computers, (), 71-80
[129] Samarskii, A.A.; Nikolaev, E.S., Numerical methods for grid equations. vol. II: iterative methods, (1989), Birkhäuser Basel · Zbl 0266.65069
[130] Sun, W., Orthogonal collocation solution of biharmonic equations, Internat J. comput. math., 49, 221-232, (1993) · Zbl 0810.65108
[131] Sun, W., Iterative algorithms for solving Hermite bicubic collocation equations, SIAM J. sci. comput., 16, 720-737, (1995) · Zbl 0826.65094
[132] Sun, W., A higher order direct method for solving Poisson’s equation on a disc, Numer. math., 70, 501-506, (1995) · Zbl 0840.65111
[133] Sun, W., Block iterative algorithms for solving Hermite bicubic collocation equations, SIAM J. numer. anal., 33, 589-601, (1996) · Zbl 0853.65121
[134] Sun, W., Fast algorithms for high-order spline collocation systems, Numer. math., 81, 143-160, (1998) · Zbl 0929.65103
[135] Sun, W., Spectral analysis of Hermite cubic spline collocation systems, SIAM J. numer. anal., 36, 1962-1975, (1999) · Zbl 0937.65110
[136] Sun, W.; Huang, W.; Russell, R.D., Finite difference preconditioning for solving orthogonal collocation for boundary value problems, SIAM J. numer. anal., 33, 2268-2285, (1996) · Zbl 0863.65072
[137] Sun, W.; Zamani, N.G., A fast algorithm for solving the tensor product collocation equations, J. franklin inst., 326, 295-307, (1989) · Zbl 0668.65088
[138] Swarztrauber, P.N.; Sweet, R.A., The direct solution of the discrete Poisson equation on a disk, SIAM J. numer. anal., 10, 900-907, (1973) · Zbl 0264.35020
[139] Tsompanopoulou, P.; Vavalis, E., ADI methods for cubic spline collocation discretizations of elliptic pdes, SIAM J. sci. comput., 19, 341-363, (1998) · Zbl 0912.65092
[140] Umar, A.S., Three-dimensional HF and TDHF calculations with the basis-spline collocation technique, (), 377-390
[141] Umar, A.S.; Wu, J.; Strayer, M.R.; Bottcher, C., Basis-spline collocation method for the lattice solution of boundary value problems, J. comput. phys., 93, 426-448, (1991) · Zbl 0724.65105
[142] Yan, Y.; Fairweather, G., Orthogonal spline collocation methods for some partial integrodifferential equations, SIAM J. numer. anal., 29, 755-768, (1992) · Zbl 0756.65157
[143] Yanik, E.G.; Fairweather, G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear anal., 12, 785-809, (1988) · Zbl 0657.65142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.