Curtis, C. W. The Steinberg character of a finite group with a \((B,N)\)-pair. (English) Zbl 0161.02203 J. Algebra 4, 433-441 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 37 Documents Keywords:group theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Curtis, C. W., Irreducible representations of finite groups of Lie type, J. für Math., 219, 180-199 (1965) · Zbl 0132.02001 [2] Curtis, C. W.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras (1962), Wiley (Interscience): Wiley (Interscience) New York · Zbl 0131.25601 [3] Feit, W.; Higman, G., The nonexistence of certain generalized polygons, J. Algebra, 1, 114-131 (1964) · Zbl 0126.05303 [4] Frobenius, G., Über die Charaktere der symmetrische Gruppe, Sitzber. Preuss. Akad. Wiss., 516-534 (1900) · JFM 31.0129.02 [5] Janusz, G., Primitive idempotents in group algebras, (Proc. Am. Math. Soc., 17 (1966)), 520-523 · Zbl 0151.02203 [6] Solomon, L., The orders of the finite Chevalley groups, J. Algebra, 3, 376-393 (1966) · Zbl 0151.02003 [7] Steinberg, R., A geometric approach to the representations of the full linear group over a Galois field, Trans. Am. Math. Soc., 71, 274-282 (1951) · Zbl 0045.30201 [8] Steinberg, R., Prime power representations of finite linear groups. I, Can. J. Math., 8, 580-581 (1956) · Zbl 0073.01502 [9] Steinberg, R., Prime power representations of finite linear groups. II, Can. J. Math., 9, 347-351 (1957) · Zbl 0079.25601 [10] Steinberg, R., Variations on a theme of Chevalley, Pacific J. Math., 9, 314 (1959) · Zbl 0092.02505 [11] Steinberg, R., Representations of algebraic groups, Nagoya Math. J., 22, 33-56 (1963) · Zbl 0271.20019 [12] Tits, J., Théorème de Bruhat et sous groupes paraboliques, Compt. Rend. Acad. Sci., Paris, 254, 2910-2912 (1962) · Zbl 0105.02201 [13] Tits, J., Algebraic and abstract simple groups, Ann. Math., 80, 2, 313-329 (1964) · Zbl 0131.26501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.