×

Sur la formule de Siegel dans la théorie des groupes classiques. (French) Zbl 0161.02304


Keywords:

group theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, A. A.,Structure of algebras. Amer. Math. Soc. Colloquium Series, vol. XXIV, Providence, Amer. Math. Soc. 1961. · Zbl 0109.12401
[2] Borel, A., Some finiteness properties of adele groups over number-fields.Publ. Math. I.H.E.S. no 16, 1963. · Zbl 0135.08902
[3] Borel, A. &Harish-Chandra, Arithmetic subgroups of algebraic groups.Ann. of Math., 75 (1962), 485–535. · Zbl 0107.14804 · doi:10.2307/1970210
[4] Bourbaki, N.,Intégration, Chapitre VII:Mesure de Haar. Paris, Hermann, 1963.
[5] Dieudonné, J.,La Géométrie des Groupes Classiques. Ergeb. d. Math. (N.F.) Bd. 5, 2e éd., J. Springer 1963.
[6] Godement, R., Domaines fondamentaux des groupes arithmétiques.Séminaire Bourbaki, 15 e année (1962–63), no 257.
[7] Godement, R., Convergence des séries d’Eisenstein. A paraître.
[8] Kneser, M., Starke Approximation in algebraischen Gruppen. A paraître,Crelles J. · Zbl 0143.04701
[9] Kneser, M., Galois-Kohomologie halbeinfacher algebraischen Gruppen über \(\mathfrak{p}\) -adischen Körpern I. A paraître,Math. Zeitschr.
[10] Langweil, S. A., Number of points of varieties in finite fields.Amer. J. of Math., 76 (1954), 819–827. · Zbl 0058.27202 · doi:10.2307/2372655
[11] Rosenlicht, M., Some rationality questions on algebraic groups.Ann. di Mat. Pura e Appl. (IV), 43 (1957), 25–50. · Zbl 0079.25703 · doi:10.1007/BF02411903
[12] Siegel, C. L., Indefinite quadratische Formen und Funktionentheorie.Math. Ann., 124 (1952), 17–54 et 364–387. · Zbl 0043.27402 · doi:10.1007/BF01343549
[13] Weil, A.,Adèles and algebraic groups. Princeton, Inst. for Adv. Study 1961. · Zbl 0109.02101
[14] –, Sur certains groupes d’opérateurs unitaires.Acta Math., 111 (1964), 143–211. · Zbl 0203.03305 · doi:10.1007/BF02391012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.