×

Nombres normaux applications aux fonctions pseudoaleatoires. (French) Zbl 0161.05002


Keywords:

number theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bass, J., Fonctions pseudo-aléatoires et fonction de Wiener,C. R. Acad. Sc. Paris, t.247 (1958), 1163–1165. · Zbl 0083.14001
[2] Bass. J., Suites uniformément denses, moyennes trigonométriques, fonctions pseudo-aléatoires,Bull. Soc. Math. France,87 (1959), 1–69.
[3] Bertrandias, J. P., Fonctions pseudo-aléatoires et fonctions presque périodiques,C. R. Acad. Sc. Paris, t.255 (1962), 2226–2228. · Zbl 0106.11801
[4] Bertrandias, J. P., Suites pseudo-aléatoires et critères d’équirépartition modulo un,Compositio Math.,16 (1965), 23–28. · Zbl 0207.05801
[5] Borel, E., Les probabilités dénombrables et leurs applications arithmétiques,Rend. Circ. Mat. Palermo,27, 1909, 247–271. · JFM 40.0283.01
[6] Cassels, J. W. S., On a paper of Niven and Zuckerman,Pacific J. of Math.,2 (1952), 555–557. · Zbl 0047.04402
[7] Davenport, Erdös, Leveque, On Weyl’s criterion for uniform distribution,Mich. Math. J.,10 (1963), 311–314. · Zbl 0119.28201
[8] Eggleston, H. G., Sets of fractional dimension,Proceedings of London Math. Soc.,54 (1951-52), 42–93. · Zbl 0045.16603
[9] Erdös, Taylor, On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences,Proc. London Math. Soc.,7 (1957), 598–615. · Zbl 0111.26801
[10] Eymard, P., Equirépartition dans un groupe compact, Séminaire Algèbre et théorie des nombres, Institut Henri Poincaré, 1960–61.
[11] Fine, N. J., On the Walsh function,Transactions Amer. Math. Soc.,65 (1949), 372–414. · Zbl 0036.03604
[12] Hurewicz, Wallman, Dimension Theory, Princeton University Press, 1948.
[13] Kahane, Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. · Zbl 0112.29304
[14] Kahane, Salem, Distribution modulo 1 and sets of uniqueness,Bull. Amer. Math. Soc.,70 (1964), 259–261. · Zbl 0142.29604
[15] Lawton, B., A note on well distributed sequences,Proc. Amer. Math. Soc.,10 (1959), 891–893. · Zbl 0089.26902
[16] Mahler, K., On the translation properties of a simple class of arithmetical functions,Journ. Math. and Phys.,6 (1927), 158–163. · JFM 53.0265.03
[17] Maxfield, J. E., Normalk-tuples,Pacific J. Math.,4 (1953), 189–196. · Zbl 0050.27503
[18] Mendes France, M., Nombres normaux et fonctions pseudo-aléatoires,Ann. Inst. Fourier,13 (1963), 91–104. · Zbl 0128.04704
[19] Mendes France, M., Représentation des réels,C. R. Acad. Sc. Paris,258 (1964), 4643–4645. · Zbl 0127.27802
[20] Mendes France, M., A set of non normal numbers,Pacific J. math.,15 (1965), 1165–1170. · Zbl 0136.34001
[21] Motzkin, T. S., The probability of solvability of linear inequalities, Proc. Second Symposium Linear Programming, Washington 1955, 607–611.
[22] Niven, Zuckerman, On the definition of normal numbers,Pacific J. Math. 1 (1951), 103–109. · Zbl 0042.26902
[23] Petersen, G. M., Almost convergence and uniformly distributed sequences,Quart. J. Math. Oxford, Series 2,7 (1956), 188–191. · Zbl 0072.28302
[24] Pjateckij-Sapiro, II., Sur le problème de l’unicité du développement d’une fonction en série trigonométrique (supplément) [en russe],Moskovskij Gosudarstvennyj Universitet im M. V. Lomonosova, Ucenye Zapiski,165 Matematika 7 (1954) 79–97.
[25] Pisot, C., La répartition modulo 1 et le nombres algébriques,Ann. Scuola Norm. Sup. di Pisa, Série 2,7 (1938), 205–248. · Zbl 0019.15502
[26] Pisot, C., Répartition (mod 1) des puissances successives des nombres réels,Comment. Math. Helvet.,19 (1946–47), 153–160. · Zbl 0063.06259
[27] Postnikov, A. G., Modèle arithmétique de processus stochastiques, (en russe),Trudy Math. Inst. Stekl.,57 (1960).
[28] Ryll-Nardzewki, C., On the ergodic theorems II,Studia Math.,12 (1951), 74–79. · Zbl 0044.12401
[29] Salem, Zygmund, Sur un théorème de Piatetçki-Shapiro,C. R. Acad. Sc. Paris,240 (1955), 2040–2042.
[30] Vilenkin, N. Ya., Supplement to Theory of orthogonal series, Amer. Math. Soc. Translations,17 (1961), 219–250. · Zbl 0133.31703
[31] Wall, D. D., Normal numbers, Ph. D. Thesis, 1949, University of California, Berkeley.
[32] Walsh, J. L., A closed set of normal orthogonal functions,Amer. J. Math.,55 (1923), 5–24. · JFM 49.0293.03
[33] Weil, A., Intégration dans les groupes topologiques et ses applications, Hermann 1953, 2e édition.
[34] Weyl, H., Über die Gleichverteilung von Zahlen mod. Eins,Math. Ann.,77 (1916), 313–352. · JFM 46.0278.06
[35] Wiener, N., The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions,Journ. Math. and Phys.,6, 1927, 145–157. · JFM 53.0265.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.