×

Fredholm theories in von Neumann algebras. I. (English) Zbl 0162.18701


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Atkinson, F. V.: The normal solubility of linear equations in normal spaces. Math. Sbornik N. S.28, (70) (1951). · Zbl 0045.19501
[2] Cordes, H. O.: On a generalized Fredholm theory, to appear. · Zbl 0177.41002
[3] ?? Über eine nicht algebraische Charakterisierung von ?-Fredholm-Operatoren. Math. Ann.163, 212-224 (1966). · Zbl 0137.31901
[4] ??, and J. P. Labrousse: The invariance of the index in the metric space of closed operators. J. Math. and Mech.12, 693-720 (1963). · Zbl 0148.12402
[5] Dieudonné, J.: Foundations of Modern Analysis. New York and London: Academic Press 1960. · Zbl 0100.04201
[6] Dixmier, J.: Applications dans les anneaux d’opérateurs. Compos. Math.10, 1-55 (1952). · Zbl 0046.33502
[7] ?? Les algebres d’opérateurs dans l’espace hilbertien. Paris: Gauthier-Villars 1957.
[8] Halperin, I.: Complemented Modular Lattices. Proc. Symposium in Pure Mathematics, Vol. II. Providence R. I., 1961. · Zbl 0114.01504
[9] Kaplansky, I.: Rings of Operators. Univ. of Chicago Notes, 1955. · Zbl 0174.18503
[10] Lang, S.: Algebra. New York: Interscience Publishers 1965. · Zbl 0193.34701
[11] Murray, F. J., and J. von Neumann: On Rings of Operators. Ann. of Math.37, 116-229 (1936). · Zbl 0014.16101
[12] Neubauer, G.: Über den Index abgeschlossener Operatoren in Banachräumen. Math. Ann.160, 93-130 (1965). · Zbl 0138.38703
[13] ?? Über den Index abgeschlossener Operatoren in Banachräumen II. Math. Ann.162, 92-119 (1965). · Zbl 0149.10102
[14] Neumann, J. von: Continuous Geometry. Proc. Nat. Acad. Sci. U.S.A.22, 98-110 (1936).
[15] Riesz, F., and B. Nagy: Functional Analysis. New York: Frederic Ungar Publishing Co. 1955.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.