×

zbMATH — the first resource for mathematics

cohomology of Lie \(p\)-algebras. (Kohomologie von \(p\)-Lie-Algebren.) (German) Zbl 0162.33701

MSC:
17B50 Modular Lie (super)algebras
17B56 Cohomology of Lie (super)algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Berkson, A.: Theu-algebra of a restricted Lie algebra is Frobenius. Proc. Am. Math. Soc.15, 14-15 (1964). · Zbl 0119.27401
[2] Bourbaki, N.: Groupes et algèbres de Lie, Chap. I. Paris: Hermann 1960. · Zbl 0199.35203
[3] Cartan, H., andS. Eilenberg: Homological algebra. Princeton Press 1956. · Zbl 0075.24305
[4] Gabriel, P.: Groupes formels. SéminaireM. Demazure etA. Grothendieck, Exp. VIIB. IHES 1962-1964.
[5] Hochschild, G.: Cohomology of restricted Lie algebras. Am. J. of Math.76, 555-580 (1954). · Zbl 0055.26505
[6] ?: Lie algebra kernels and cohomology. Am. J. of Math.76, 698-716 (1954). · Zbl 0055.26601
[7] Jacobson, N.: Lie algebras. New York: [Interscience] John Wiley & Sons 1962. · Zbl 0121.27504
[8] Jacobson, N.: Representation theory of Jordan algebras. C.I.M.E. 2 Ciclo, Some aspects of ring theory. Roma 1966. · Zbl 0199.07104
[9] Kasch, F.: Projektive Frobenius-ERweiterungen. Sitzungsber. Heidelberger Akad. 89-109 (1960/61).
[10] ?: Dualitätseigenschaften von Frobenius-Erweiterungen. Math. Z.77, 219-227 (1961). · Zbl 0112.26502
[11] MacLane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963.
[12] May, J. P.: The cohomology of restricted Lie algebras. J. Algebra3, 123-146 (1966). · Zbl 0163.03102
[13] Pareigis, B.: Einige Bemerkungen über Frobenius-Erweiterungen. Math. Ann.153, 1-13 (1964). · Zbl 0122.04005
[14] ?: Cohomology of groups in arbitrary categories. Proc. Am. Math. Soc.15, 803-809 (1964). · Zbl 0192.11301
[15] ?: Vergessende Funktoren und Ringhomomorphismen. Math. Z.93, 265-275 (1966). · Zbl 0146.02503
[16] Séminaire Heidelberg-Strasbourg, Groupes algébriques linéaires. 1965/66.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.