×

zbMATH — the first resource for mathematics

A priori estimates for hypoelliptic differential equations in a half- space. (English) Zbl 0162.41002
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] L. Arkeryd On the LP estimates for elliptic boundary problems , Math. Scand. 19 ( 1966 ), 59 - 76 . MR 224970 | Zbl 0152.11202 · Zbl 0152.11202 · eudml:165957
[2] K. Frifdrichs , On the differentiability of the solutions of linear elliptic differential equations , Comm. Pure Appl. Math . 6 ( 1953 ), 299 - 325 . MR 58828 | Zbl 0051.32703 · Zbl 0051.32703 · doi:10.1002/cpa.3160060301
[3] E. Goursat , Cours d’Analyse Mathématique , 5 e édition, Paris 1929 . · JFM 46.0375.13
[4] L. Hörmander , On the regularity of the solutions of boundary problems , Acta Math. 99 ( 1958 ), 225 - 264 . MR 131655 | Zbl 0083.09201 · Zbl 0083.09201 · doi:10.1007/BF02392427
[5] L. Hörmander , Linear partial differential operators , Berlin , Springer , 1963 . MR 404822 | Zbl 0108.09301 · Zbl 0108.09301
[6] L. Hörmander , J.L. Lions , Sur la complétion par rapport à une integrale de Dirichlet , Math. Scand. 4 ( 1956 ), 259 - 270 . MR 87848 | Zbl 0078.28003 · Zbl 0078.28003 · eudml:165631
[7] T. Matsuzawa , Regularity at the boundary for solutions of hypo-elliptic equations , Osaka J. Math. 3 ( 1966 ), 313 - 334 . MR 209667 | Zbl 0168.07801 · Zbl 0168.07801
[8] J. Peetre , On estimating the solutions of hypoelliptic differential equations near the plane boundary , Math. Scand. 9 ( 1961 ), 337 - 351 . MR 146517 | Zbl 0113.30601 · Zbl 0113.30601 · eudml:165779
[9] M. Schechter , On the dominance of partial differential operators II , A. S. N. S. Pisa 18 ( 1964 ), 255 - 282 . Numdam | MR 188614 | Zbl 0125.05903 · Zbl 0125.05903 · numdam:ASNSP_1964_3_18_3_255_0 · eudml:83325
[10] L. Schwartz , Theorie des distributions , Paris 1957 , 1959 . · Zbl 0085.09703
[11] M.I. Višik , G.I. Eskin , Uravuenija v svertkah v organicennoj oblasti , Usp. Mat. Nauk 20 ( 1965 ), 89 - 151 . MR 185273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.