zbMATH — the first resource for mathematics

Note on a subdirect representation of universal algebras. (English) Zbl 0164.01101

08B26 Subdirect products and subdirect irreducibility
Full Text: DOI
[1] G. Birkhoff,Lattice Theory, AMS Coll. Publ, vol.25, (N. Y., 1948).
[2] G. Birkhoff, Subdirect unions in universal algebras,Bull, Amer. Math. Soc.,50 (1944), pp. 764–768. · Zbl 0060.05809
[3] I. Fleischer, A note on subdirect products,Acta Math. Acad. Sci. Hung.,6 (1955), pp. 463–465. · Zbl 0070.26301
[4] L. Fuchs, On subdirect unions. I.Acta Math. Acad. Sci. Hung.,3 (1952), pp. 103–120. · Zbl 0047.03003
[5] G. Grätzer,Universal algebra, © 1966, to appear in D. V. Nostrand Co., Princeton, New Jersey.
[6] J. Hashimoto, Direct, subdirect decompositions and congruence relations,Osaka Math. J., (1957), pp. 87–112. · Zbl 0078.01805
[7] J. H. M. Wedderburn, Homomorphisms of groups,Annals of Math.,42 (1971), pp. 486–487. · Zbl 0027.15104
[8] O. Zariski-P. Samuel, Commutative algebra I, D. V. Nostrand Co., Princeton, (New Jersey, 1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.