×

zbMATH — the first resource for mathematics

On some sequencing problems. (English) Zbl 0164.20004

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akers, ”A Non-numerical Approach to Production Scheduling Problems,”, Operations Research 3 pp 429– (1955) · doi:10.1287/opre.3.4.429
[2] Akers, ”A Graphical Approach to Production Scheduling Problems,”, Operations Research 4 pp 244– (1956) · doi:10.1287/opre.4.2.244
[3] Bellman, ”Mathematical Aspects of Scheduling Theory,”, J. Soc. Ind. and Appl. Mathematics 4 pp 168– (1956) · Zbl 0074.14901 · doi:10.1137/0104010
[4] Bowman, ”The Schedule-Sequencing Problem,”, Operations Research 7 pp 621– (1959) · Zbl 1255.90059 · doi:10.1287/opre.7.5.621
[5] Dantzig, ”A Machine-Job Scheduling Model,”, Management Science 6 pp 191– (1960) · doi:10.1287/mnsc.6.2.191
[6] Gomory, ”Outline of an Algorithm for Integer Solutions to Linear Programs,”, Bull. Am. Math. Soc. 64 pp 275– (1958) · Zbl 0085.35807 · doi:10.1090/S0002-9904-1958-10224-4
[7] Johnson, ”Optimal Two and Three Stage Production Schedules with Set-up Times Included,”, Naval Res. Logist. Quart. 1 pp 61– (1954) · Zbl 1349.90359 · doi:10.1002/nav.3800010110
[8] Mitten, ”Sequencing n Jobs of Two Machines with Arbitrary Time Lags,”, Management Science 5 pp 293– (1959) · Zbl 0995.90539 · doi:10.1287/mnsc.5.3.293
[9] Szwarc, ”Solution of the Akers-Friedman Scheduling Problem,”, Operations Research 8 pp 782– (1960) · Zbl 0100.15102 · doi:10.1287/opre.8.6.782
[10] Wagner, ”An Integer Linear Programming Model for Machine Scheduling,”, Naval Res. Logist. Quart. 6 pp 131– (1959) · doi:10.1002/nav.3800060205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.