Decomposition of modules. II: Rings without chain conditions. (English) Zbl 0164.34703

Full Text: DOI EuDML


[1] Amitsur, S. A.: General theory of radicals II: Radicals in rings and bicategories. Amer. J. Math.76, 100-125 (1954). · Zbl 0055.02604
[2] Cohn, P. M.: Non-commutative unique factorization domains. Trans. Amer. Math. Soc.109, 313-331 (1963). · Zbl 0136.31203
[3] Dickson, S. E.: A torsion theory for Abelian categories. Trans. Amer. Math. Soc.121, 223-235 (1966). · Zbl 0138.01801
[4] ? Decomposition of modules I: Classical rings. Math. Zeitschrift90, 9-13 (1965). · Zbl 0154.28404
[5] Dickson, S. E.: Direct decompositions of radicals. Proceedings of the Conference on Categorical Algebra, La Jolla, California, June 1965, 366-374.
[6] Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France90, 323-448 (1962).
[7] Kurosch, A. G.: Radicals in rings and algebras. Mat. Sb. (N.S..)33 (75), 13-26 (1953) [Russian]. · Zbl 0050.26101
[8] Maranda, J. M.: Injective structures. Trans. Amer. Math. Soc.110, 98-135 (1964). · Zbl 0121.26601
[9] Matlis, E.: Modules with descending chain condition. Trans. Amer. Math. Soc.97, 495-508 (1960). · Zbl 0094.25203
[10] Northcott, D. G.: An introduction to homological algebra. Cambridge University Press 1960. · Zbl 0116.01401
[11] Northcott, D. G. Ideal theory. Cambridge tract no. 42, 1960.
[12] Van Der Waerden: Modern Algebra, vol. II (Eng. transl.). New York: Ungar 1950. · Zbl 0037.01903
[13] Walker, C. L., andE. A. Walker: Quotient categories and rings of quotiets (to appear).
[14] Walker, E. A.: Quotient categories and quasi-isomorphisms of abelian groups. Proceedings of the Colloquium on Abelian Groups, Tihany, Hungary, Sept. 1963, 147-162.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.