×

zbMATH — the first resource for mathematics

Das asymptotische Verhalten von Summen über multiplikative Funktionen. II. (German) Zbl 0165.05901

Keywords:
number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. van Aardenne-Ehrenfest, N. G. de Bruijn undJ. Korevaar, A note on slowly oscillating functions,Nieuw Arch. Wisk.,23 (1949), S. 66–77. · Zbl 0045.33503
[2] N. G. de Bruijn undJ. H. van Lint, Incomplete sums of multiplicative functions I, II,Nederl. Akad. Wetensch. Proc. Ser. A, 67 Indag. Math.,26 (1964) 339–358. · doi:10.1016/S1385-7258(64)50040-2
[3] H. Delange, Une thèorème sur les fonotions arithmétiques multiplicatives et ses applications,Ann. Sci. École Norm. Sup., (3)78 (1961), S. 1–29. · Zbl 0109.03106 · doi:10.24033/asens.1097
[4] H. Delange, Sur les fonctions arithmétiques multiplicatives,Ann. Sci. Ecole Norm. Sup., (3)78 (1961), S. 273–304. · Zbl 0234.10043 · doi:10.24033/asens.1103
[5] H. Delange, On a class of multiplicative arithmetical functions,Scripta Math.,26 (1963), S. 121–141. · Zbl 0117.03202
[6] P. Erdos, Some unsolved problems,Michigan Math. J.,4 (1957), 291–300. · Zbl 0081.00102 · doi:10.1307/mmj/1028997963
[7] P. Erdos andA. Rényi, On the mean value of nonnegative multiplicative number theoretical functions,Michigan Math. J.,12 (1965), S. 321–338. · Zbl 0131.04303 · doi:10.1307/mmj/1028999368
[8] A. Rényi, A new proof of a theorem of Delange,Publ. Math. Inst. Hung. Acad. Sci.,12 (1965), S. 323–329. · Zbl 0139.27003
[9] A. Wintner,The theory of measure in arithmetical semigroups (Baltimore, 1944). · Zbl 0060.10512
[10] E. Wirsing, Über die Zahlen, deren Primteiler einer gegebenen Menge angehören,Arch. Math.,7 (1966), S. 263–272. · Zbl 0075.25001 · doi:10.1007/BF01900300
[11] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen,Math. Ann.,143 (1961), S. 75–102. · Zbl 0104.04201 · doi:10.1007/BF01351892
[12] E. Wirsing, Elementare Beweise des Primzahlsatzes II,J. reine angew. Math.,214/215 (1964), S. 1–18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.