×

zbMATH — the first resource for mathematics

Potential theory on Hilbert space. (English) Zbl 0165.16403

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bonic, R; Frampton, J, Differentiable functions on certain Banach spaces, Bull. am. math. soc., 71, 393-395, (1965) · Zbl 0131.12905
[2] Daletzky, Yu.L, Differential equations with functional derivatives and stochastic equations for generalized random processes, Dokl. akad. nauk SSSR, 166, 1035-1038, (1966)
[3] Dini, V, Sur la méthode des approximations successives pour LES équations aux dérivées partielles du deuxième ordre, Acta. math., 25, 185-230, (1902) · JFM 32.0366.03
[4] Doob, J.L, Semimartingales and subharmonic functions, Trans. am. math. soc., 77, 86-121, (1954) · Zbl 0059.12205
[5] Dynkin, E.B, Markov processes—I, (1965), Academic Press New York · Zbl 0132.37901
[6] Feldman, J, Equivalence and perpendicularity of Gaussian processes, Pacific J. math., 8, 699-708, (1958) · Zbl 0084.13001
[7] Gelfand, I.M; Vilenkin, N.Ya, Some applications of harmonic analysis-augmented Hilbert spaces, (), (in Russian). Moscow · Zbl 0103.09202
[8] Gross, L, Integration and nonlinear transformations in Hilbert space, Trans. am. math. soc., 94, 404-440, (1960) · Zbl 0090.33303
[9] Gross, L, Measurable functions on Hilbert space, Trans. am. math. soc., 105, 372-390, (1962) · Zbl 0178.50001
[10] Gross, L, Classical analysis on a Hilbert space, (), Chap. 4 · Zbl 0118.32201
[11] {\scGross, L.}, Abstract Wiener spaces, in “Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability” (to be published).
[12] Hunt, G.A, Some theorems concerning Brownian motion, Trans. am. math. soc., 81, 294-319, (1956) · Zbl 0070.36601
[13] Kurzweil, J, On approximation in real Banach spaces, Studia math., 14, 213-231, (1954) · Zbl 0064.10802
[14] Levy, P, Leçons d’analyse fonctionelle, (1922), Gauthier-Vilars Paris · JFM 48.0453.01
[15] Levy, P, Analyse fonctionelle, Mem. sci. math. acad. sci. Paris, (1925), fasc. 5
[16] Levy, P, Problèmes concrets d’analyse fonctionelle, (1951), Gauthier-Villars Paris
[17] Levy, P, Random functionsl a Laplacian random function depending on a point of Hilbert space, Univ. calif. publ. statistics, 2, No. 10, 195-206, (1956)
[18] Nelson, E, An existence theorem for second order parabolic equations, Trans. am. math. soc., 88, 414-429, (1958) · Zbl 0115.31101
[19] Petrini, H, LES dérivées premières et secondes du potentiel, Acta. math., 31, 127-332, (1908) · JFM 39.0819.01
[20] Prochorov, Yu.V, The method of characteristic functionals, (), 403-419
[21] Schatten, R, A theory of cross spaces, (1950), Princeton University Press Princeton, New Jersey · Zbl 0041.43502
[22] Segal, I.E, Distributions in Hilbert space and canonical systems of operators, Trans. am. math. soc., 88, 12-41, (1958) · Zbl 0099.12104
[23] Varadhan, S.R.S, Limit theorems for sums of independent random variables with values in a Hilbert space, Sankhya, ser. A, 24, 213-238, (1962) · Zbl 0113.34101
[24] Whitfield, J.H.M, Differentiable functions with bounded nonempty support on Banach spaces, Bull. am. math. soc., 72, 145-146, (1966) · Zbl 0134.32404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.