A quadratic programming approach for certain classes of non linear structural problems. (English) Zbl 0165.28502

Full Text: DOI


[1] W. Prager,Lineare Ungleichungen in der Baustatik, Schweizerische Bauzeitung, May, 1962.
[2] G. Ceradini andC. Gavarini,Calcolo a rottura e programmazione lineare, Giorn. Genio Civile, no. 1–2, 1965.
[3] C. Gavarini,I teoremi fondamentali del calcolo a rottura e la dualità in programmazione lineare, Ingegneria Civile, no. 18, 1966.
[4] P. G. Hodge,Yield point load determination by nonlinear programming, Proc. XI Intern. Congr. Appl. Mech., Munich, Springer Verlag, 1966. · Zbl 0151.37605
[5] H. P. Künzi andW. Krelle,Nichtlineare Programmierung, Springer Verlag, Berlin, 1962.
[6] J. C. G. Boot,Quadratic programming, North-Holland Publ. Comp., Amsterdam, 1964. · Zbl 0138.15802
[7] G. B. Dantzig,Linear programming and extensions, Princeton Univ. Press, Princeton, 1963.
[8] G. Maier,Behavior of elastic plastic trusses with unstable bars, Journ. Eng. Mech. Div., ASCE 92, no. 2, 1966.
[9] J. N. Goodier andP. G. Hodge,Elasticity and plasticity, J. Wiley Inc., New York, 1958.
[10] L. Contri,Del teorema di Haar e Kármán in presenza di scarichi locali, Giorn. Genio Civile, no. 1, 1960.
[11] G. Ceradini,A maximum principle for the analysis of elasticplastic systems, Meccanica, Vol. I, no. 4, 1966. · Zbl 0161.21902
[12] G. Maier,On elastic plastic structures, with associated stress-strain relations allowing for work softening, Meccanica, Vol. II, no. 1, 1967. · Zbl 0222.73045
[13] W. Prager,The general theory of limit design, Proc. VIII Int. Congr. Appl. Mech., no. 2, 1956. · Zbl 0995.90607
[14] W. T. Koiter,Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yeild surface, Quart. Appl. Math., no. 3, 1953. · Zbl 0053.14003
[15] H. W. Kuhn andA. W. Tucker,Nonlinear programming, Proc. II Berkeley Symp. on Math. Stat. and Probab., ed. J. Neyman, Los Angeles, 1951. · Zbl 0044.05903
[16] N. J. Hoff,Approximate analysis of structures in the presence of moderately large creep deformations, Quart. Appl. Math., no. 1, 1954. · Zbl 0057.40803
[17] W. Prager,Elastic solids of limited compressibility, Proc. IX Congr. of Appl. Mech., Vol. V, Bruxelles, 1958.
[18] W. T. Koiter,General theorems for elastic plastic solids, in Progress in Solids Mechanics, ed. T. Sneddon and R. Hill, North-Holland Publ., Amsterdam, 1960. · Zbl 0109.43002
[19] P. Villaggio,Sull’esistenza e l’unicità di soluzioni dei problemi al contorno in elastoplasticità, Rend. Ist. Lomb. di Sc. e Lett., 96, 1961.
[20] C. Hildreth,A quadratic programming procedure, Nav. Res. Log. Quart., no.4, 1957.
[21] D. A. D’Esopo,A convex programming procedure, Nav. Res. Log. Quart., no. 6, 1959.
[22] G. Ceradini,Sul calcolo delle strutture elastoplastiche, Costruz. Metall., no. 3–4, 1965. · Zbl 0138.21303
[23] E. M. L. Beale,On quadratic programming, Nav. Res. Log. Quart., no. 6, 1959.
[24] E. Barankin andR. Dorfman,On quadratic programming, Univ. of California Publ. in Statistics, no. 2, 1958. · Zbl 0080.36502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.