Pool, J. C. T. Semimodularity and the logic of quantum mechanics. (English) Zbl 0165.28902 Commun. Math. Phys. 9, 212-228 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 37 Documents Keywords:quantum theory PDFBibTeX XMLCite \textit{J. C. T. Pool}, Commun. Math. Phys. 9, 212--228 (1968; Zbl 0165.28902) Full Text: DOI References: [1] Birkhoff, G.: Lattice theory, American Mathematical Society Colloquium Publications, Vol. 25, 3rd. Ed., Providence, R. I. (1967). · Zbl 0153.02501 [2] —-, andJ. von Neumann: The logic of quantum mechanics. Ann. Math.37, 823–843 (1936). · JFM 62.1061.04 · doi:10.2307/1968621 [3] Derderian, J. C.: Residuated mappings. Pacific J. Math.20, 35–43 (1967). · Zbl 0145.01602 [4] Dixmier, J.: Les algebres d’operateurs dans l’espace hilbertian. Paris: Gauthier-Villars 1957. [5] —- LesC*-algebres et leurs representations. Paris: Gauthier-Villars 1964. [6] Foulis, D. J.: Baer *-semigroups. Proc. Am. Math. Soc.11, 648–654 (1960). · Zbl 0239.20074 [7] —- A note on orthomodular lattices. Portugal. Math.21, 65–72 (1962). · Zbl 0106.24302 [8] —- Relative inverses in Baer *-semigroups. Michigan Math. J.10, 65–84 (1963). · Zbl 0116.25404 · doi:10.1307/mmj/1028998825 [9] Haag, R., andD. Kastler: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964). · Zbl 0139.46003 · doi:10.1063/1.1704187 [10] Jauch, J. M.: Foundations of quantum mechanics. Reading, Mass.: Addison-Wesley 1968. · Zbl 0166.23301 [11] MacLaren, M. D.: Atomic orthocomplemented lattices. Pacific J. Math.14, 597–612 (1964). · Zbl 0122.02201 [12] – Notes on axioms for quantum mechanics. Argonne National Laboratory Report, ANL-7065 (1965). [13] Piron, C.: Axiomatique quantique. Helv. Phys. Acta37, 439–468 (1964). · Zbl 0141.23204 [14] Pool, J. C. T.: Simultaneous observability and the logic of quantum mechanics. Thesis, State University of Iowa, Department of Physics Report SUI-63-17 (1963). [15] —- Baer *-semigroups and the logic of quantum mechanics, Commun. Math. Phys.9, 118–141 (1968). · Zbl 0159.59602 · doi:10.1007/BF01645838 [16] Schatten, R.: Norm ideals of completely continuous operators. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0090.09402 [17] Schreiner, E. A.: Modular pairs in orthomodular lattices. Pacific J. Math.19, 519–528 (1966). · Zbl 0148.25605 [18] Topping, D. M.: Asymptoticity and semimodularity in projection lattices. Pacific J. Math.20, 317–325 (1967). · Zbl 0166.11403 [19] von Neumann, J.: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 245–272 (1927). · JFM 53.0849.01 [20] —- Mathematical foundations of quantum mechanics. Trans. by R. T. Beyer. Princeton: Princeton Univ. Press. 1955. [21] Zierler, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math.11, 1151–1169 (1761). · Zbl 0138.44503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.