×

An extremal problem related to Kolmogoroff’s inequality for bounded functions. (English) Zbl 0165.48801


Full Text: DOI

References:

[1] Achiezer, N. I., Vorlesungen über Approximationstheorie. Berlin 1953 (1947).
[2] Bang, T., Une inégalité de Kolmogoroff et les functions presqueperiodiques. Danske Vid. Selsk Mat.-Fys. Medd.XIX, 4 (1941).
[3] Domar, Y., On the uniqueness of minimal extrapolations. Ark. Mat.4, 19–29 (1959). · Zbl 0091.10201 · doi:10.1007/BF02591318
[4] Herz, C. S., The spectral theory of bounded functions. Trans. Am. Math. Soc.94, 181–232 (1960). · Zbl 0090.33202 · doi:10.1090/S0002-9947-1960-0131779-3
[5] Hörmander, L., A new proof and a generalization of an inequality of Bohr. Math. Scand.2, 33–45 (1954). · Zbl 0056.30801
[6] Kolmogoroff, A. N., On inequalities between upper bounds of consecutive derivatives of an arbitrary function defined on an infinite interval. Učenye Zapiski Moskov. Gos. Univ. Matematika30, 3–16 (1939); Amer. Math. Soc. Translation 4. · Zbl 0061.11602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.