Manas, Miroslav; Nedoma, Josef Finding all vertices of a convex polyhedron. (English) Zbl 0165.51801 Numer. Math. 12, 226-229 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 37 Documents Keywords:numerical analysis PDF BibTeX XML Cite \textit{M. Manas} and \textit{J. Nedoma}, Numer. Math. 12, 226--229 (1968; Zbl 0165.51801) Full Text: DOI EuDML References: [1] Arrow, K. J., L. Hurwicz, andH. Uzawa: Studies in linear and nonlinear programming. Stanford: Stanford University Press 1958. · Zbl 0091.16002 [2] Balinski, M. L.: An algorithm for finding all vertices of convex polyhedral sets. J. Soc. Indust. Appl. Mathem.9, 72–88 (1961). · Zbl 0108.33203 [3] Hadley, G.: Linear programming. Reading, Mass: Addison-Wesley Publ. Co. 1962. · Zbl 0102.36304 [4] Filipovitch, E. I., andO. M. Kozlov: On an estimate of the number of iterations in some linear programming methods. In: Mathematical methods of optimal planning. Novosibirsk : Nauka 1966 [in Russian]. [5] Klee, V.: On the number of vertices of a convex polytope. Canadian Journal of Mathematics16, 701–720 (1964). · Zbl 0128.17201 [6] Motzkin, T. S., H. Raiffa, G. L. Thompson, andR. M. Thrall: The double description method. In: Contributions to the theory of games, vol. II. Princeton: Princeton University Press 1953. · Zbl 0050.14201 [7] Saaty, T. L.: The number of vertices of a polyhedron. The American Mathematical Monthly62, 326–331 (1955). · Zbl 0064.39808 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.