zbMATH — the first resource for mathematics

On non-Euclidean crystallographic groups. (English) Zbl 0166.02602

group theory
Full Text: DOI EuDML
[1] Behr, H.: Über die endliche Definierbarkeit von Gruppen. Crelles J.211, 116-122 (1962). · Zbl 0107.26201 · doi:10.1515/crll.1962.211.116
[2] Coxeter, H. S. M., andW. O. J. Moser: Generators and relations for discrete groups. Ergebnisse der Math. (Neue Folge)14, Berlin: Springer 1957. · Zbl 0077.02801
[3] Fricke, R., u.F. Klein: Vorlesungen über die Theorie der automorphen Funktionen. 2 Bde. Leipzig: Teubner 1926.
[4] Gerstenhaber, M.: On the algebraic structure of discontinuous groups. Proc. of Am. Math. Soc.4, 745-750 (1953). · Zbl 0051.40205 · doi:10.1090/S0002-9939-1953-0058602-1
[5] James, R. C.: Combinatorial Topology of Surfaces. Math. Magazine29, 1-39 (1955). · Zbl 0066.41703 · doi:10.2307/3029520
[6] Lehner, J.: Discontinuous groups and automorphic functions. Math. Surveys 8. Am. Math. Soc. (1964). · Zbl 0178.42902
[7] Macbeath, A. M.: Groups of homeomorphisms of a simply connected space. Annals of Math.79, 473-488 (1964). · Zbl 0122.17503 · doi:10.2307/1970405
[8] Magnus, W.: Discrete Groups. New York 1952 (Notes).
[9] Nielsen, J.: Some fundamental concepts concerning discontinuous groups of linear substitutions in a complex variable. Den 11te Skandinaviske Matematikerkongress i Trondheim (1949), 61-70.
[10] Poincare, H.: Theorie des groupes fuchsiens. Acta Mathematica1, 1-62 (1882). · JFM 14.0338.01 · doi:10.1007/BF02592124
[11] Reidemeister, K.: Einführung in die Kombinatorische Topologie. Braunschweig: Vieweg 1932. · Zbl 0004.36904
[12] Siegel, C. L.: Discontinuous groups. Annals of Math.44, 674-689 (1943). · Zbl 0061.04504 · doi:10.2307/1969104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.