×

Integral geometry in homogeneous spaces. (English) Zbl 0166.18103


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 339 – 344. · Zbl 0046.28202
[2] A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110 – 120. · Zbl 0063.00354 · doi:10.1112/jlms/s1-20.2.110
[3] J. E. Brothers, Integral geometry in homogeneous spaces, Ph. D. thesis, Brown University, Providence, R. I., 1964. · Zbl 0166.18103
[4] Shiing-shen Chern, On integral geometry in Klein spaces, Ann. of Math. (2) 43 (1942), 178 – 189. · Zbl 0147.22303 · doi:10.2307/1968888
[5] Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. · Zbl 0063.00842
[6] G. DeRham, Variétés différentiables, Actualités Sci. Indust. No. 1222, Hermann, Paris, 1955.
[7] Herbert Federer, The (\?,\?) rectifiable subsets of \?-space, Trans. Amer. Soc. 62 (1947), 114 – 192. · Zbl 0032.14902
[8] Herbert Federer, Dimension and measure, Trans. Amer. Math. Soc. 62 (1947), 536 – 547. · Zbl 0032.15001
[9] Herbert Federer, Some integralgeometric theorems, Trans. Amer. Math. Soc. 77 (1954), 238 – 261. · Zbl 0058.16405
[10] -, An analytic characterization of distributions whose partial derivatives are representable by measures, Bull. Amer. Math. Soc. 60 (1954), 339, Abstract 407.
[11] Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418 – 491. · Zbl 0089.38402
[12] Herbert Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43 – 67. · Zbl 0136.18204
[13] Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458 – 520. · Zbl 0187.31301 · doi:10.2307/1970227
[14] Gerald Freilich, On the measure of Cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232 – 275. · Zbl 0039.28402
[15] Jun-ichi Hano, On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885 – 900. · Zbl 0096.16203 · doi:10.2307/2372440
[16] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[17] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. · Zbl 0091.34802
[18] J.-L. Koszul, Exposés sur les espaces homogènes symétriques, Publicaçao da Sociedade de Matematica de Sao Paulo, Sao Paulo, 1959 (French). · Zbl 0097.37102
[19] Klaus Krickeberg, Distributionen, Funktionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen, Ann. Mat. Pura Appl. (4) 44 (1957), 92, 105 – 133 (German). · Zbl 0082.26702 · doi:10.1007/BF02415194
[20] Minoru Kurita, An extension of Poincaré formula in integral geometry, Nagoya Math. J. 2 (1951), 55 – 61. · Zbl 0042.16303
[21] Lynn H. Loomis, The intrinsic measure theory of Riemannian and Euclidean metric spaces, Ann. of Math. (2) 45 (1944), 367 – 374. · Zbl 0060.13406 · doi:10.2307/1969274
[22] Tadashi Nagano, Homogeneous sphere bundles and the isotropic Riemann manifolds, Nagoya Math. J 15 (1959), 29 – 55. · Zbl 0086.36601
[23] S. Saks, Theory of the integral, Monografie Matematyczne No. 7, Warsaw, 1937. · Zbl 0017.30004
[24] Arthur Sard, The equivalence of \?-measure and Lebesgue measure in \?_{\?}, Bull. Amer. Math. Soc. 49 (1943), 758 – 759. · Zbl 0063.06721
[25] I. I. Pjateckiĭ-Šapiro, On a problem proposed by E. Cartan, Dokl. Akad. Nauk SSSR 124 (1959), 272 – 273 (Russian). · Zbl 0089.06201
[26] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[27] A. Weil, L’intégration dans les groups topologiques et ses applications, Actualités Sci. Indust. No. 869, Hermann, Paris, 1938.
[28] Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.