×

zbMATH — the first resource for mathematics

On the boundary behavior of solutions to a class of elliptic partial differential equations. (English) Zbl 0166.37702

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aronszajn, N., andSmith, K. T., Functional spaces and functional completion. Ann. Inst. Fourier6, 125 (1955–6). · Zbl 0067.09102
[2] Arsove, M. G., andHuber, H., On the existence of non-tangential limits of subharmonic functions. Notices Am. Math. Soc.13, 3, 367 (1966).
[3] Brelot, M. andDoob, J. L.: Limits angulaires et limites fines. Ann. Inst. Fourier13.2, 395 (1963). · Zbl 0132.33902
[4] Calderón, A. P., On the behavior of harmonic functions at the boundary. Trans. Am. Math. Soc.68, 47 (1950). · Zbl 0035.18901
[5] –: On a theorem of Marcinkiewicz and Zygmund. Trans. Am. Math. Soc.68, 55 (1950).
[6] Calderón, A. P., andZygmund, A., On the existence of certain singular integrals. Acta Math.88, 85 (1952). · Zbl 0047.10201 · doi:10.1007/BF02392130
[7] Carleson, L., On the existence of boundary values for harmonic functions in several variables. Ark. Mat.4.(30), 393 (1961). · Zbl 0107.08402 · doi:10.1007/BF02591620
[8] Deny, J., andLions, J. L., Les espaces du type de Beppo-Levi. Ann. Inst. Fourier5, 305 (1953–4).
[9] Fatou, P., Séries trigonometriques et séries de Taylor. Acta Math.30, 335 (1906). · JFM 37.0283.01 · doi:10.1007/BF02418579
[10] Gunther, N. M., La théorie du potentiel. Paris, 1934.
[11] Hardy, G. H., Littlewood, J. E., andPólya, G., Inequalities. Cambridge, 1934
[12] Hörmander, L., On the division of distributions by polynomials. Ark. Mat.3.53, 555 (1958). · Zbl 0131.11903 · doi:10.1007/BF02589517
[13] Keldyš, M. V., andLavrent’ev, M. A., Ob odnoî ocenke funkcii Grina (On an estimate of Green’s function). Doklady Akad. Nauk SSSR24.2, 102 (1939).
[14] Krasnosel’skiî, M. A., andRutickiî, Ja. B., Vypuklye funkcii i prostranstva Orliĉa (Convex fuctions and Orlicz spaces). Moskva, 1958.
[15] Littlewood, J. E., On functions subharmonic in a cricle. II. Proc. London Math. Soc. (2)28, 383 (1928). · JFM 54.0516.04 · doi:10.1112/plms/s2-28.1.383
[16] Łojasiewicz, S., Théorème de Fatou pour les équations elliptiques. Les équations aux derivées partielles. Coll. int. du CNRS. Paris, 1963. · Zbl 0232.35038
[17] Marcinkiewicz, J., andZygmund, A., A theorem of Lusin. Duke Math. J.4, 473 (1938). · Zbl 0019.42001 · doi:10.1215/S0012-7094-38-00440-5
[18] Schauder, J., Potentialtheoretische Untersuchungen. Math. Z.33, 602 (1931). · Zbl 0001.33602 · doi:10.1007/BF01174371
[19] Serrin, J., On the Harnack inequality for linear elliptic equations. J. d’Analyse Math.4, 292 (1956). · Zbl 0070.32302 · doi:10.1007/BF02787725
[20] Solomencev, E. D., O graniĉnyh znaĉeniyah subgarmoniĉeskih funkciî (Sur les valeurs limites des fonctions sousharmoniques). Czechoslovak Math. J.8, 520 (1958).
[21] Spencer, D. C., A function theoretic identity. Amer. J. Math.65, 147 (1943). · Zbl 0060.20603 · doi:10.2307/2371778
[22] Stein, E. M., On the theory of harmonic functions of several variables. II. Acta Math.106, 137 (1961). · Zbl 0111.08001 · doi:10.1007/BF02545785
[23] Tolsted, E. B., Nontangential limites of subharmonic functions. Proc. London Math. Soc.7, 321 (1967). · Zbl 0079.12201 · doi:10.1112/plms/s3-7.1.321
[24] Vekua, I. N., Generalized analytic functions. Oxford, 1962. · Zbl 0127.03505
[25] Wallin, H., On the existence of boundary values of a class of Beppo-Levi functions. To appear in Trans. Amer. Math. Soc. · Zbl 0139.06301
[26] Weinstein, A., Generalized axially symmetric potential theory. Bull. Am. Math. Soc.59, 20 (1953). · Zbl 0053.25303 · doi:10.1090/S0002-9904-1953-09651-3
[27] Widman, K.-O., On the boundary values of harmonic functions inR 3. Ark. Mat.5.14, 221 (1964). · Zbl 0132.34002 · doi:10.1007/BF02591124
[28] Zygmund, A., Trigonometric series. I. Cambridge, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.