zbMATH — the first resource for mathematics

DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular nonsymmetric linear systems. (English) Zbl 0982.65043
The paper deals with the linear system \[ Ax= b,\tag{1} \] where \(A\in \mathbb{C}^{N\times N}\) is a singular matrix and \(\text{ind}(A)\) is arbitrary. The author uses a generalized minimal residual (GMRES)-type algorithm in order to obtain the Drazin-inverse solution of (1).

65F20 Numerical solutions to overdetermined systems, pseudoinverses
65F10 Iterative numerical methods for linear systems
Full Text: DOI
[1] Arnoldi, W.E., The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. appl. math., 9, 17-29, (1951) · Zbl 0042.12801
[2] Ben-Israel, A.; Greville, T.N.E., Generalized inverses: theory and applications, (1974), Wiley New York · Zbl 0305.15001
[3] D. Calvetti, L. Reichel, Q. Zhang, Conjugate gradient algorithms for symmetric inconsistent linear systems, in: J.D. Brown, M.T. Chu, D.C. Ellison, R.J. Plemmons (Eds.), Proceedings of the Cornelius Lanczos International Centenary Conference, SIAM, 1993, pp. 267-272
[4] Campbell, S.L.; Meyer, C.D., Generalized inverses of linear transformations, (1979), Pitman London · Zbl 0417.15002
[5] Climent, J.J.; Neumann, M.; Sidi, A., A semi-iterative method for real spectrum singular linear systems with arbitrary index, J. comp. appl. math., 87, 21-38, (1987) · Zbl 0899.65020
[6] Eiermann, M.; Marek, I.; Niethammer, W., On the solution of singular linear systems of algebraic equations by semiiterative methods, Numer. math., 53, 265-283, (1988) · Zbl 0655.65049
[7] Eisenstat, S.C.; Elman, H.C.; Schultz, M.H., Variational iterative methods for non-symmetric systems of linear equations, SIAM J. numer. anal., 20, 345-357, (1983) · Zbl 0524.65019
[8] R. Fletcher, Conjugate gradient methods for indefinite systems, in: A.G. Watson (Ed.), Numerical Analysis, Dundee 1975, Springer, New York, 1976, pp.73-89
[9] Freund, R.; Nachtigal, N., QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. math., 60, 315-339, (1991) · Zbl 0754.65034
[10] Hanke, M.; Hochbruck, M., A Chebyshev-like semiiteration for inconsistent linear systems, Electr. trans. numer. anal., 1, 89-103, (1993) · Zbl 0809.65039
[11] Lanczos, C., Solution of systems of linear equations by minimized iterations, J. res. N.B.S., 49, 33-53, (1952)
[12] Saad, Y.; Schultz, M.H., A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[13] Sidi, A., A unified approach to Krylov subspace methods for the Drazin-inverse solution of singular non-symmetric linear systems, Linear algebra appl., 298, 99-113, (1999) · Zbl 0983.65054
[14] Sidi, A.; Kluzner, V., A bi-CG type iterative method for Drazin-inverse solution of singular inconsistent non-symmetric linear systems of arbitrary index, Electr. J. linear algebra, 6, 72-94, (1999) · Zbl 0965.65064
[15] van der Vorst, H., Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for solution of non-symmetric linear systems, SIAM J. sci. statist. comput., 13, 631-644, (1992) · Zbl 0761.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.