Barban, M. B.; Vekhov, P. P. On an extremal problem. (Russian) Zbl 0167.04003 Tr. Mosk. Mat. O.-va 18, 83-90 (1968). The following theorem is proved: Let \(\lambda_d=\mu(d)\) when \(d\leq z\) and \(=\mu(d)(\log z_1/d)(\log z_1/z)^{-1}\) when \(z\leq d\leq z_1\). Then for \(x>z\), \(\log z_1\ll \log z\) we have \[ \sum_{1<n\leq x}\left(\sum_{d\mid n,\;d\leq z_1}\lambda_d\right)^2\ll x\left(\log\frac{z_1}{z}\right)^{-1}. \] Reviewer: Imre Kátai (Budapest) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 4 Documents MSC: 11N37 Asymptotic results on arithmetic functions 11N35 Sieves Keywords:estimate of arithmetic function PDF BibTeX XML Cite \textit{M. B. Barban} and \textit{P. P. Vekhov}, Tr. Mosk. Mat. O.-va 18, 83--90 (1968; Zbl 0167.04003) OpenURL