×

zbMATH — the first resource for mathematics

Global solutions for an extended class of hyperbolic systems of conservation laws. (English) Zbl 0167.10204

MSC:
35L65 Hyperbolic conservation laws
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cesari, L., Sulle funzioni a variazione limita. Ann. Scuola Norm. Pisa (2), 5, 299–313 (1936). · Zbl 0014.29605
[2] Dieudonn√©, J., Foundations of modern analysis. Academic Press 1960. · Zbl 0100.04201
[3] De Giorgi, E., Nuovi teoremi relativi alle misure (n-1)-dimensionale in uno spazio ad r dimensioni. Richerche Mat. 36, 95–113 (1955). · Zbl 0066.29903
[4] Glimm, J., Solutions in the large for non-linear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 695–717 (1965). · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[5] Glimm, J., & P. D. Lax, Decay of solutions of systems of hyperbolic conservation laws. Bull. A. M. S. 73, 105 (1967). · Zbl 0146.33803 · doi:10.1090/S0002-9904-1967-11666-5
[6] Fleming, W. H., Functions with generalized gradient and generalized surfaces. Ann. Mat. Pura Appl. ser. 4, 44, 93–104 (1957). · Zbl 0082.26701 · doi:10.1007/BF02415193
[7] Johnson, J. L., & J. A. Smoller, Global solutions of certain hyperbolic systems of quasilinear equations. J. Math. Mech. 17, 561–576 (1967). · Zbl 0165.11402
[8] Johnson, J. L., & J. A. Smoller, Global solutions of hyperbolic systems of conservation laws in two dependent variables. To appear in Bull. A. M. S. · Zbl 0164.12102
[9] Lax, P. D., Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 10, 537–566 (1957). · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[10] Lax, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Ph. 5, 611–613 (1964). · Zbl 0135.15101 · doi:10.1063/1.1704154
[11] Zhang, Tong & Guo, Yu-Fa, A class of initial-value problems for systems of aerodynamic equations. Acta Math. Sinica 15, 386–396 (1965). English translation in Chinese Math. 7, 90–101 (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.