Giusti, E.; Miranda, M. Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. (Italian) Zbl 0167.10703 Arch. Ration. Mech. Anal. 31, 173-184 (1968). Reviewer: E. Giusti Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 74 Documents MSC: 35D30 Weak solutions to PDEs 35J62 Quasilinear elliptic equations Keywords:quasilinear elliptic equations; weak solutions Citations:Zbl 0127.31904; Zbl 0155.44501 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Almgren, F. J., Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87 (1968). · Zbl 0162.24703 [2] Campanato, S., Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17, (1963). · Zbl 0121.29201 [3] De Giorgi, E., Sulla differenziabilità e l’analiticità delie estremali degli integrali multipli regolari. Mem. Acc. Sci. Torino (1967). · Zbl 0084.31901 [4] De Giorgi, E., Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup. Pisa (1960–61). · Zbl 0296.49031 [5] Giusti, E., & M. Miranda, Un esempio di soluzioni discontinue per un problema di minime relative ad un integrale regolare del calcolo delle variazioni. Boll. Un. Mat. Ital. 2 (1968). · Zbl 0155.44501 [7] Morrey, C. B., Jr., Multiple integral problems in the calculus of variations and related topics. Ann. Scuola Norm. Sup. Pisa 14 (1960). [8] Morrey, C. B., Jr., Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0142.38701 [9] Morrey, C. B., Jr., Partial regularity results for non-linear elliptic systems. J. Math. Mech. 17 (1968). · Zbl 0175.11901 [10] Federer, H., Some properties of distributions whose partial derivatives are representable by integration. Bull. Am. Math. Soc. 74 (1968). · Zbl 0163.36503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.