×

zbMATH — the first resource for mathematics

Initial-boundary value problems for linear hyperbolic partial differential equations of the second order. (English) Zbl 0168.08201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Duff, G. F. D.: Harmonic p-tensors on normal hyperbolic Riemannian spaces. Can. J. Math. 5, 57-80 (1953). · Zbl 0052.32801 · doi:10.4153/CJM-1953-008-8
[2] Duff, G. F. D.: Partial Differential Equations. Toronto: Univ. of Toronto Press 1956.
[3] Duff, G. F. D.: A mixed problem for normal hyperbolic linear partial differential equations of second order. Can. J. Math. 9, 141-160 (1957). · Zbl 0079.11602 · doi:10.4153/CJM-1957-018-3
[4] Duff, G. F. D.: Hyperbolic mixed problems for harmonic tensors. Can. J. Math. 9, 161-179 (1957). · doi:10.4153/CJM-1957-019-0
[5] Duff, G. F. D.: Mixed problems for linear systems of first order equations. Can. J. Math. 10, 127-160 (1957). · Zbl 0080.07703 · doi:10.4153/CJM-1958-017-1
[6] Duff, G. F. D.: Mixed problems for hyperbolic equations of general order. Can. J. Math. 11, 195-221 (1959). · Zbl 0086.07603 · doi:10.4153/CJM-1959-024-1
[7] Friedrichs, K. O.: Spektraltheorie halbbeschr?nkter Operatoren. Math. Ann. 109, 465-487, 685-713 (1934); 110, 777-779 (1935). · Zbl 0008.39203 · doi:10.1007/BF01449150
[8] Friedrichs, K. O.: On differential operators in Hilbert spaces. American J. Math. 61, 523-544 (1939). · Zbl 0020.36802 · doi:10.2307/2371518
[9] Friedrichs, K. O.: The identity of weak and strong extensions of differential operators. Trans. A. M. S. 55, 132-151 (1944). · Zbl 0061.26201
[10] Friedrichs, K. O.: On the differentiability of the solutions of linear elliptic differential operators. Comm. Pure Appl. Math. 6, 299-326 (1953). · Zbl 0051.32703 · doi:10.1002/cpa.3160060301
[11] Garnir, H.: Th?orie des Espaces Fonctionnels Hilbertiens et ses Applications aux Probl?mes aux Limites de la Physique Math?matique. Basle: Birkhauser 1958.
[12] Hille, E., & R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloquium Publications, Vol. XXXI (1957).
[13] Krzyzanski, M., & J. Schauder: Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus: Gemischte Randwertaufgaben. Studia Math. 6, 162-189 (1936). · JFM 62.0567.02
[14] Ladyzhenskaya, O. A.: On non-stationary operator equations and their application to linear problems of mathematical physics. Mat. Sbornik 45, 123-158. (1958) [in Russian]
[15] Lions, J. L.: Equations Diff?rentielles Op?rationnelles et Probl?mes aux Limites. Berlin-G?ttingen-Heidelberg: Springer 1961.
[16] Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. III 13, 1-48 (1959). · Zbl 0088.07601
[17] Phillips, R. S.: Dissipative hyperbolic systems. Trans. A. M. S. 86, 109-173 (1957). · Zbl 0081.31102 · doi:10.1090/S0002-9947-1957-0090748-2
[18] Phillips, R. S.: Dissipative operators and hyperbolic systems of partial differential equations. Trans. A. M. S. 90, 193-254 (1959). · Zbl 0093.10001 · doi:10.1090/S0002-9947-1959-0104919-1
[19] Riesz, F., & B. Sz.-Nagy: Functional Analysis. New York: F. Ungar 1955.
[20] Schauder, J.: Gemischte Randwertaufgaben bei partiellen Differentialgleichungen vom hyperbolischen Typus. Studia Math. 6, 190-198 (1936). · JFM 62.0567.03
[21] Vishik, M., & O. A. Ladyzhenskaya: Boundary value problems for partial differential equations and certain classes of operator equations. Uspehi Mat. Nauk (N.S.) 11, 41-97 (1956) [Russian] A. M. S. Translation, series II 10, 223-281 (1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.