×

Contribution à l’analyse statistique des tableaux de correlation. (French) Zbl 0168.39904


Keywords:

statistics

References:

[1] Aitchison, J. (1962). Large sample restricted parametric tests. J. R. Stat. Soc. B, 24, p. 234-250. · Zbl 0113.13604
[2] Asano, C. (1965). On estimating multinomial probabilities by pooling incomplete samples. Ann. Inst. Stat. Math.17, p. 1-13. · Zbl 0134.36102
[3] Barton, D.E., David, F.N. et Fix, E., (1962). Persistence in a chain of multiples events. Biometrika, 49, p. 351-357. · Zbl 0218.60059
[4] Batschelet, E. (1960 a). Uber eine Kontingenztafel mit fehlenden Daten. Biom. Zeit., 2, p. 236-243. · Zbl 0106.13204
[5] Batschelet, E. (1960 b). Auslesefreie Verteilung des Manifestations alters mit einer Anwendung auf die Respirationsatopien. Biom. Zeit., 2, p. 244-256. · Zbl 0104.38102
[6] Bhapkar, V.P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical Data. J. Amer. Stat. Ass., 61, p. 228-235. · Zbl 0147.18402
[7] Birch, M.W. (1963). Maximum likelihood in three-way contingency tables. J. R. Stat. Soc. B, 25, p. 220-233. · Zbl 0121.14001
[8] Bowker, A.H. (1948). A test of symetry in contingency tables. J. Amer. Stat. Ass., 43, p. 572-574. · Zbl 0032.17500
[9] Caussinus, H. (1962 a). Sur certaines généralisations de l’emploi du test du χ2. C. R. Acad. Sc., t. 254, p. 3306-3308. · Zbl 0126.34701
[10] Caussinus, H. (1962 b). Sur un problème d’analyse de la corrélation de deux caractères qualitatifs. C. R. Acad. Sc., t. 255, p. 1688-90. · Zbl 0114.10001
[11] Caussinus, H. (1965). Sur les tables de contingence tronquées. C. R. Acad. Sc., t. 261, p. 5303-5306. · Zbl 0136.40804
[12] Caussinus, H. (1966 a). Remarques sur les problèmes d’estimation et de tests dans les tables de contingence tronquées. C. R. Acad. Sc., t. 262 A, p. 293-295. · Zbl 0136.40805
[13] Caussinus, H. (1966 b). Sur l’analyse de certaines tables de contingence. C. R. Acad. Sc., t. 263 A, p. 551-554. · Zbl 0144.41606
[14] Caussinus, H. (1966 c). Sur la structure des tableaux de corrélation carrés. C. R. Acad. Sc., t. 263 A, p. 795-797. · Zbl 0158.37304
[15] Gochran, W.G. (1952). The χ2 test of goodness of fit. Ann. Math. Stat.23, p. 315-345. · Zbl 0047.13105
[16] Cochran, W.G. (1954). Some methods for strengthening the common χ2 tests. Biometrics, 10, p. 417-451. · Zbl 0059.12803
[17] Cramer, H. (1946). Mathematical Methods of statistics, Princeton University Press. · Zbl 0063.01014
[18] Darroch, J.N. (1962). Interactions in multi-factor contingency tables. J. R. Stat. Soc. B, 24, p. 251-263. · Zbl 0112.11004
[19] Deltheil, R. et Huron, R. (1959). Statistique mathématique, , Paris. · Zbl 0089.34904
[20] Deming, W.E.et Stephan, F.F. (1940). On a least square adjustement of a sample frequency table when the expected marginal totals are known. Ann. Math. Stat., 11, p. 427-444. · JFM 66.0652.02
[21] Diamond, E.L., Mitra, S.K.et Roy, S.N. (1960). Asymptotic power and asymptotic independence in the statistical analysis of categorical data. Bull. Inst. Int. Stat., 37, p. 309-329. · Zbl 0134.36901
[22] Dugue, D. (1958). Traité de Statistique théorique et appliquée, Masson et Cie, Paris. · Zbl 0084.14305
[23] Ferguson, T.S. (1958). A method of generating best asymptotically normal estimates with application to the estimation of bacterial densities. Ann. Math. Stat., 29, p. 1046-1062. · Zbl 0089.15402
[24] Fix, E., Hodges, J.L. et Lehmann (1959). The restricted chi-square test, In Probability and Statistics, the Harald Cramer Volume, édité par U. Grenander, Wiley, New-York. · Zbl 0201.52201
[25] Frechet, M. (1959). Sur les tableaux de corrélation dont les marges et des cases vides sont données. C. R. Acad. Sc., 249, p. 592. · Zbl 0086.13102
[26] Frechet, M. (1960). Sur les tableaux dont les marges et les bornes sont données. Rev. Inst. Int. Stat., 28, p. 10-32. · Zbl 0093.01602
[27] Friedlander, D. (1961). Technique for estimating a contingency table given the marginal totals and some supplementary data. J. R. Stat. Soc. A., 124, p. 412-420.
[28] Geppert, M.P. (1961). Erwartungstreue plausibelste Schätzer aus dreieckig gestutzten Kontingenztafeln, Biom. Zeit., 3, p. 54-67. · Zbl 0095.33901
[29] Gil, B. et Omaboe, E.N. (1963). Internal migration differentials from conventionnal census questionnaire items in Ghana. Bull. Inst. Int. Stat. Actes de la 34e Session. Tome XL, 1re livraison, p. 431-446.
[30] Goodman, L.A. (1963 a). On Plackett’s test for contingency table interactions. J. R. Stat. Soc. B, 25, p. 179-188. · Zbl 0137.13102
[31] Goodman, L.A. (1963 b). On methods for comparing contingency tables. J. R. Stat. Soc. A, 126, p. 94-108.
[32] Goodman, L.A. (1964 a). Simultaneous confidence limits for crossproduct ratios in contingency tables. J. R. Stat. Soc. B, 26, p. 86-102. · Zbl 0129.32304
[33] Goodman, L.A. (1964 b). Simple methods for analyzing three-factor interaction in contingency tables. J. Amer. Stat. Ass., 59, p. 319-352. · Zbl 0129.33101
[34] Goodman, L.A. (1964 c). The analysis of persistence in a chain of multiple events. Biometrika, 51, p. 405-411. · Zbl 0132.38502
[35] Goodman, L.A.et Kruskal, W.H. (1954). Mesures of association for cross classifications (I). J. Amer. Stat. Ass., 49, p. 732-764. · Zbl 0056.12801
[36] Goodman, L.A.et Kruskal, W.H. (1959). Mesures of association for cross classifications. II : Further discussion and references. J. Amer. Stat. Ass., 54, p. 123-163. · Zbl 0095.13101
[37] Goodman, L.A.et Kruskal, W.H. (1963). Mesures of association fort cross-classifications. III : approximate sampling theory. J. Amer. Stat. Ass., 58, p. 310-364. · Zbl 0095.13101
[38] Harris, A.J.et Treloar, A.E. (1927). On a limitation in the applicability of the contingency coefficient. J. Amer. Stat. Ass., 22, p. 460-472.
[39] Harris, A.J. et CHI TU (1929). A second category of limitations in the applicability of the contingency coefficient. J. Amer. Stat. Ass., 24, p. 367-375. · JFM 55.0923.02
[40] Harris, A.J., Treloar, A.E. and Wilder, M. (1930). Professor Pearson’s note on ours papers on contingency. J. Amer. Stat. Ass., 25, p. 323-327. · JFM 56.1094.05
[41] Irwin, J.O. (1949). A note on the subdivision of χ2 into components. Biometrika, 36, p. 130-134. · Zbl 0033.07501
[42] Ishii, G. (1960). Intraclass contingency tables. Ann. Inst. Statist. Math. Tokyo, 12, p. 161-207. · Zbl 0214.18101
[43] Kale (1962). On the solution of likelihood equations by iteration processes. The multiparametric case. Biometrika, 49, p. 479-486. · Zbl 0118.14301
[44] Kastenbaum, M.A. (1958). Estimation of relative frequencies of four sperm types in Drosophila Melanogaster. Biometrics, 14, p. 223-228. · Zbl 0081.14206
[45] Kendall, M.G. et Stuart, A. (1958). The advanced theory of statistics, Volume 1 : distribution theory. Ch. Griffin et Cie, Londres. · Zbl 0223.62001
[46] Kendall, M.G.et Stuart, A. (1961). The advanced theory of statistics, Volume 2 : inference and relationship. Ch. Griffin et Cie, Londres. · Zbl 0249.62003
[47] Lancaster (1949). The derivation and partition of χ2 in certain discrete distributions. Biometrika, 36, p. 117-129. · Zbl 0033.07402
[48] Lehmann, E.L. (1959). Testing statistical hypotheses, Wiley, New-York. · Zbl 0089.14102
[49] Lewontin et Falsenstein (1965). The robustness of homogeneity tests in 2 × n tables. Biometrics, 21, p. 19.
[50] Lokki, O. (1961). An application of the common chi-squared test. Soc. Sci Fenn., Comm-Physico-Math., 26, 8, p. 1-10. · Zbl 0101.36303
[51] Neyman, J. (1949). Contribution to the theory of χ2 test. Proceedings of the first Berkeley Symposium, p. 239-273. · Zbl 0039.14302
[52] Okamoto et Ishii (1961). Test of independance in intraclass 2 × 2 tables. Biometrika, 45, p. 181-190. · Zbl 0098.33101
[53] Pearson, K. (1930). On the theory of contingency. I. Note on Prof essor J. Arthur Harris’ paper on the limitation in the applicability of the contingency coefficient. J. Amer. Stat. Ass.25, p. 320-323. · JFM 56.1094.04
[54] Plackett, R.L. (1962). A note on interactions in contingency tables. J. R. Stat. Soc.B, 24, p. 162-166. · Zbl 0285.62029
[55] Pressat, R. (1963). L’attraction dans les migrations intérieures. Bull. Inst. Intern. Stat. (Actes de la 34e Session), tome XL, 1re livraison, p. 450-460.
[56] Roy, S.N. et Kastenbaum, M.A. (1956). On the hypothesis of « no interaction » in a multi-way contingency table. Ann. Math. Stat., 27, p. 749-757. · Zbl 0074.14102
[57] Scheffe (1959). The analysis of variance. Wiley, New-York. · Zbl 0086.34603
[58] Stephan, F.F. (1942). An iterative method of adjusting sample frequency tables when expected marginal totals are known. Ann. Math. Stat., 13, p. 166-178. · Zbl 0060.31505
[59] Stuart, A. (1953). The estimation and comparison of strengths of assosiation in contingency tables. Biometrika, 40, p. 105-110. · Zbl 0050.36405
[60] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, p. 412-416. · Zbl 0066.12502
[61] Tallis, G.M. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18, p. 342-353. · Zbl 0107.14005
[62] Thionet, P. (1963). Sur certaines variantes des projections du tableau d’échanges interindustriels, Bull. Inst. Inter. Stat., tome XL, 1re livraison, p. 431-446. · Zbl 0121.15106
[63] Thionet, P. (1964). Note sur le remplissage d’un tableau à double entrée. Journal de la Société de Statistique de Paris, n° 10-11-12, p. 228-247.
[64] Tocher, K.D. (1950). Extension of the Neyman-Pearson theory of tests to discontinuous variates. Biometrika, 37, p. 130-144. · Zbl 0040.07502
[65] Waite, H. (1915). Association of finger-prints. Biometrika, 10, p. 421-478.
[66] Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large, Trans. Amer. Math. Soc., 54, 426-482. Réimprimé dans : Selected papers in statistics and probability by Abraham Wald. · Zbl 0063.08120
[67] Watson, G.S. (1956). Missing and « Mixed-up » frequencies in contingency tables. Biometrics, 12, p. 47-50.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.