×

An embedding without a normal microbundle. (English) Zbl 0168.44602


Keywords:

topology

References:

[1] Fadell, E.: Generalised normal bundles for locally-flat imbeddings. Trans. Amer. Math. Soc.114, 488-513 (1965). · Zbl 0129.39503 · doi:10.1090/S0002-9947-1965-0179795-4
[2] Haefliger, A.: Differentiable embeddings ofS n inS n+q forq>2. Ann. of Math.83, 402-436 (1966). · Zbl 0151.32502 · doi:10.2307/1970475
[3] ?: Enlacements de spheres en codimensions supérieure à deux. Comm. Math. Helv.41, 51-72 (1966). · Zbl 0149.20801 · doi:10.1007/BF02566868
[4] ?, andV. Poenaru: Classifications des immersions combinatoire. Publ. Inst. Hautes Etudes Sci.23, 75-91 (1964). · Zbl 0147.42502 · doi:10.1007/BF02684311
[5] Hirsch, M. W.: On tubular neighbourhoods of manifolds I and II. Proc. Cam. Phil. Soc.62, 177 and 183 (1966). · Zbl 0151.32701 · doi:10.1017/S0305004100039712
[6] Hudson J. F. P., andE. C. Zeeman: On combinatorial isotopy. Publ. Inst. Hautes Etudes Sci.19, 69-94 (1964). · Zbl 0136.21201 · doi:10.1007/BF02684797
[7] James, I. M.: On the iterated suspension. Quart. Jour. Math. Oxford5, 1-10 (1954). · Zbl 0055.41802 · doi:10.1093/qmath/5.1.1
[8] Kister, J. M.: Microbundles are fibre bundles. Ann. of Math.80, 190-199 (1964). · Zbl 0131.20602 · doi:10.2307/1970498
[9] Rourke, C. P., andB. J. Sanderson: Block bundles I, II (transversality), III (homotopy theory) Ann. of. Math. (to appear). · Zbl 0215.52302
[10] ??: Block bundles (announcement). Bull. Amer. Math. Soc.72, 1036-1039 (1966). · Zbl 0147.42501 · doi:10.1090/S0002-9904-1966-11635-X
[11] Stallings, J. R.: On topologically unknotted spheres. Ann. of Math.77, 490-503 (1963). · Zbl 0121.18202 · doi:10.2307/1970127
[12] Toda, H.: Composition methods in the homotopy groups of spheres. Ann. of Math. Study (Princeton). · Zbl 0101.40703
[13] Zeeman, E. C.: Unknotting combinatorial balls. Ann. of Math.78, 501-526 (1963). · Zbl 0122.17901 · doi:10.2307/1970538
[14] ?: Seminar on combinatorial topology. Inst. Hautes Etudes Sci., Paris 1963-1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.