×

zbMATH — the first resource for mathematics

A class of nonlinear eigenvalue problems. (English) Zbl 0169.17004

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Müller, P.H, Eine neue methode zur behandlung nichtlinearer eigenvertaufgaben, Math. Z., 70, 381-406, (1959) · Zbl 0083.34901
[2] Lancaster, P, Lambda-matrices and vibrating systems, (1966), Pergamon Oxford, England · Zbl 0146.32003
[3] {\scAnselone, P., and Rall, L.}, “Newton’s Method for Characteristic Vector-Value Problems.” Tech. Summary Rept. #492, Mathematics Research Center, U.S. Army, Madison, Wisconsin.
[4] Barston, E.M, Electrostatic resonance oscillations of a nonuniform hot plasma in an external field, Phys. rev., 139, A394-A400, (1965)
[5] Chandrasekhar, S, Hydrodynamic and hydromagnetic stability, (1961), Clarendon Oxford, England · Zbl 0142.44103
[6] Doležal, V, Location of eigenfrequencies of electric networks, J. soc. indust. appl. math., 12, 526-538, (1964) · Zbl 0127.08604
[7] Förster, K.-H, Über linear, abgeschlossene operatoren, die analytisch von einem parameter abhangen, Math. Z., 95, 251-258, (1967) · Zbl 0151.19204
[8] Hadeler, K.P, Eigenverte von operatorpolynomen, Arch. rational mech. anal., 20, 72-80, (1965) · Zbl 0136.12601
[9] Hadeler, K.P, Über operatorgleichungen mit nicht linear auftretendem parameter, Zamm, 47, 91-96, (1967) · Zbl 0155.19103
[10] Harazov, D.F, Spectral theory of completely continuous linear operators depending quadratically on a parameter, (), 171-187 · Zbl 0171.34801
[11] Harazov, D.F, Spectral theory of some linear operators depending meromorphically on a parameter, Studia math., 20, 19-45, (1961) · Zbl 0106.09002
[12] Harazov, D.F, On the spectrum of completely continuous operators depending analytically on a parameter, in a topological linear space, Acta sci. math. (Szeged), 23, 38-45, (1962) · Zbl 0108.11404
[13] Rogers, E.H, A minimax theory for over damped systems, Arch. rational mech. anal., 16, 89-96, (1964) · Zbl 0124.07105
[14] Shinbrot, M, Note on a nonlinear eigenvalue problem, (), 552-558 · Zbl 0115.33802
[15] Shinbrot, M, A nonlinear eigenvalue problem, II, Arch. ration. mech. anal., 15, 368-376, (1964) · Zbl 0127.33702
[16] Turner, R.E.L, Some variational principles for a nonlinear eigenvalue problem, J. math. anal. appl., 17, 151-160, (1967) · Zbl 0147.12201
[17] Schwartz, J, Perturbations of spectral operators, and applications, Pacific J. math., 4, 415-458, (1954) · Zbl 0056.34901
[18] Riesz, F; Sz.-Nagy, B, Functional analysis, (1955), Ungar New York
[19] Dunford, N; Schwartz, J, Linear operators, ()
[20] Wermer, J, Commuting spectral measures on Hilbert space, Pacific J. math., 4, 355-361, (1954) · Zbl 0056.34701
[21] Lorch, E.R, Bicontinuous linear transformations in certain vector spaces, Bull. am. math. soc., 45, 564-569, (1939) · Zbl 0022.05302
[22] Aronszajn, N, Approximation methods for eigenvalues of completely continuous symmetric operators, () · Zbl 0067.09101
[23] Bazley, N.W; Fox, D.W, Lower bounds for eigenvalues of Schrödinger’s equation, Phys. rev., 124, 483-492, (1961) · Zbl 0121.08501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.