×

zbMATH — the first resource for mathematics

A generalized Lebesgue-type integral. (English) Zbl 0169.18202

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Dunford, N., and J. T. Schwartz: Linear operators, part 1. New York: Interscience Publishers, Inc., 1958. · Zbl 0084.10402
[2] Edwards, R. E.: Functional analysis. New York: Holt, Rinehart and Winston 1965. · Zbl 0182.16101
[3] Ford, D. A.: A Lebesgue-Stieltjes integral. Ph. D. thesis, University of Utah, 1962.
[4] Tucker, D. H.: A note on the Riesz representation theorem. Proc. Amer. Math. Soc.14, 354-358 (1963). · Zbl 0117.33201
[5] Tucker, D. H.: A representation theorem for a continuous linear transformation on a space of continuous functions. Proc. Amer. Math. Soc.16, 946-954 (1965). · Zbl 0137.32001
[6] Uherka. D. J.: Generalized Stieltjes integrals and a strong representation theorem for continuous linear maps on a function space (to appear in Math. Ann.). · Zbl 0169.18201
[7] Royden, H. L.: Real analysis. Macmillan Co., New York, 1963. · Zbl 0121.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.