Thomas, Emery On the existence of immersions and submersions. (English) Zbl 0169.26101 Trans. Am. Math. Soc. 132, 387-394 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents Keywords:topology × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115 – 207 (French). · Zbl 0052.40001 · doi:10.2307/1969728 [2] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313 – 337. · Zbl 0129.15601 · doi:10.2307/1970106 [3] W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017 – 1028. · Zbl 0134.42801 · doi:10.2307/2373259 [4] Samuel Feder, Immersions and embeddings in complex projective spaces, Topology 4 (1965), 143 – 158. · Zbl 0151.32301 · doi:10.1016/0040-9383(65)90062-5 [5] Ioan James and Emery Thomas, Submersions and immersions of manifolds, Invent. Math. 2 (1967), 171 – 177. · Zbl 0146.19803 · doi:10.1007/BF01425511 [6] André Haefliger and Morris W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129 – 135. · Zbl 0113.38607 · doi:10.1016/0040-9383(63)90028-4 [7] Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242 – 276. · Zbl 0113.17202 [8] Morris W. Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566 – 571. · Zbl 0123.16701 · doi:10.2307/1970318 [9] S. D. Liao, On the theory of obstructions of fiber bundles, Ann. of Math. (2) 60 (1954), 146 – 191. · Zbl 0057.15401 · doi:10.2307/1969704 [10] Mark Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315 – 349. · Zbl 0128.16805 [11] Mark E. Mahowald and Franklin P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367 – 377. · Zbl 0166.19502 · doi:10.1016/0040-9383(63)90016-8 [12] W. S. Massey, On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92 – 102. · Zbl 0089.39301 · doi:10.2307/2372878 [13] W. S. Massey, On the Stiefel-Whitney classes of a manifold. II, Proc. Amer. Math. Soc. 13 (1962), 938 – 942. · Zbl 0109.15902 [14] W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1 – 13. · Zbl 0121.18005 [15] John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430 – 436. · Zbl 0071.17401 · doi:10.2307/1970012 [16] G. F. Paechter, The groups \?\?(\?_{\?,\?}). I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249 – 268. · Zbl 0073.18402 · doi:10.1093/qmath/7.1.249 [17] Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171 – 206. · Zbl 0204.23701 · doi:10.1016/0040-9383(67)90034-1 [18] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103 [19] Emery Thomas, Seminar on fiber spaces, Lectures delivered in 1964 in Berkeley and 1965 in Zürich. Berkeley notes by J. F. McClendon. Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. · Zbl 0151.31604 [20] Emery Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184 – 217. · Zbl 0152.22002 · doi:10.2307/1970439 [21] Emery Thomas, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183 – 1205. · Zbl 0153.53503 [22] Emery Thomas, Submersions and immersions with codimension one or two, Proc. Amer. Math. Soc. 19 (1968), 859 – 863. · Zbl 0169.26102 [23] Hassler Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), no. 3, 645 – 680. · Zbl 0015.32001 · doi:10.2307/1968482 [24] W. Wu, Classes caractéristique et i-carrés d’une variété, C. R. Acad. Sci. Paris 230 (1950), 508-521. · Zbl 0035.11002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.