×

Submersions and immersions with codimension one or two. (English) Zbl 0169.26102


Keywords:

topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7 – 38. · Zbl 0108.17705
[2] A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math. (2) 69 (1959), 667 – 677. · Zbl 0124.38103
[3] Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242 – 276. · Zbl 0113.17202
[4] Morris W. Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566 – 571. · Zbl 0123.16701
[5] W. S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-289. · Zbl 0089.39204
[6] Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171 – 206. · Zbl 0204.23701
[7] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[8] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685 – 697. · Zbl 0151.31703
[9] Emery Thomas, On the cohomology of the real Grassmann complexes and the characteristic classes of \?-plane bundles, Trans. Amer. Math. Soc. 96 (1960), 67 – 89. · Zbl 0098.36301
[10] Emery Thomas, Homotopy classification of maps by cohomology homomorphisms, Trans. Amer. Math. Soc. 111 (1964), 138 – 151. · Zbl 0119.18401
[11] -, On the existence of immersions and submersions (to appear). · Zbl 0169.26101
[12] Wen-tsün Wu, Les \?-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918 – 920 (French). · Zbl 0035.24904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.