Gangolli, R. Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces. (English) Zbl 0169.46004 Acta Math. 121, 151-192 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 33 Documents Keywords:functional analysis PDFBibTeX XMLCite \textit{R. Gangolli}, Acta Math. 121, 151--192 (1968; Zbl 0169.46004) Full Text: DOI References: [1] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.J. Indian Math. Soc., 20 (1956), 47–87. · Zbl 0072.08201 [2] Tamagawa, T., On Selberg’s trace formula,J. Fac. Sci. Univ. Tokyo, 8 (1960), 363–386. · Zbl 0118.11405 [3] Gelfand, I. M., Automorphic functions and the theory of representations.Proceedings International Congress of Mathematicians, Stockholm, 1962. [4] Gelfand, I. M., Graev, M. & Pyatetski-Shapiro I.,Generalized functions, Vol. VI. Moscow, 1966. [5] Minakshisundaram, S. &Pleijel, Å., Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds.Canad. J. Math., 1 (1949), 242–256. · Zbl 0041.42701 · doi:10.4153/CJM-1949-021-5 [6] Helgason, S.,Differential geometry and symmetric spaces. Academic Press, New York, 1962. · Zbl 0111.18101 [7] –, Fundamental solutions of invariant differential operators on symmetric spaces.Amer. J. Math., 86 (1964) 565–601. · Zbl 0178.17001 · doi:10.2307/2373024 [8] Harish-Chandra, Representations of semisimple Lie groups I.Trans. Amer. Math. Soc., 75 (1953), 185–243. · Zbl 0051.34002 · doi:10.1090/S0002-9947-1953-0056610-2 [9] –, Spherical functions on a semisimple Lie group I.Amer. J. Math., 80 (1958), 241–310. · Zbl 0093.12801 · doi:10.2307/2372786 [10] –, Spherical functions on a semisimple Lie group II.Amer. J. Math., 80 (1958), 553–613. · Zbl 0093.12801 · doi:10.2307/2372772 [11] –, Discrete series for semisimple Lie groups II.Acta Math., 116 (1966), 1–111. · Zbl 0199.20102 · doi:10.1007/BF02392813 [12] Gindikin, S. &Karpelevic, F., Plancherel measure of Riemannian symmetric spaces of nonpositive curvature.Dokl. Akad. Nauk SSSR, 145 (1962), 252–255;Soviet Math. Dokl., 3 (1962), 962–965. [13] Bhanu-Murthy, T. S., Plancherel’s measure for the factor spaceSL(n, R)/SO(n).Dokl. Akad. Nauk SSSR, 133 (1960), 503–506. [14] Harish-Chandra, The Plancherel formula for complex semisimple Lie groups.Trans. Amer. Math. Soc., 76 (1954), 485–528. · Zbl 0055.34003 · doi:10.1090/S0002-9947-1954-0063376-X [15] Itô, S., The fundamental solution of the parabolic equation on a differentiable manifold.Osaka J. Math., 5 (1953), 75–92; 6 (1954), 167–185. · Zbl 0052.32703 [16] Nelson, E., Analytic vectors.Ann. of Math., 70 (1959), 572–615. · Zbl 0091.10704 · doi:10.2307/1970331 [17] Gangolli, R., Isotropic infinitely divisible measures on symmetric spaces.Acta Math., 111 (1964), 213–246. · Zbl 0154.43804 · doi:10.1007/BF02391013 [18] Helgason, S., Differential operators on homogeneous spaces.Acta Math., 102 (1959), 239–299. · Zbl 0146.43601 · doi:10.1007/BF02564248 [19] Harish-Chandra, Invariant eigendistributions on a semisimple Lie, group.Trans. Amer. Math. Soc., 119 (1965) 457–508. · Zbl 0199.46402 · doi:10.1090/S0002-9947-1965-0180631-0 [20] Titchmarsh, E. C.,Theory of, functions. 2nd Edition Oxford University Press, London, 1939. · Zbl 0022.14602 [21] McKean, P. H. Jr. &Singer, I. M., Curvature and the eigenvalues of the Laplacian.J. Diff. Geom., 1 (1967), 43–70. · Zbl 0198.44301 [22] Kac, M., Can one hear the shape of a drum?Amer. Math. Monthly, 73 (1966), 1–23. · Zbl 0139.05603 · doi:10.2307/2313748 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.