×

zbMATH — the first resource for mathematics

The Monte Carlo program KoralW version 1. 51 and the concurrent Monte Carlo KoralW&YFSWW3 with all background graphs and first-order corrections to \(W\)-pair production. (English) Zbl 1007.81068
Summary: The version 1.51 of the Monte Carlo (MC) program KoralW for all \(e^+ e^-\to f_1\overline f_2 f_3\overline f_4\) processes is presented. The most important change from the previous version 1.42 is the facility for writing MC events on the mass storage device and reprocessing them later on. In the reprocessing parameters of the standard model may be modified in order to fit them to experimental data. Another important new feature is the possibility of including complete \(O(\alpha)\) corrections to double-resonant \(W\)-pair component-processes in addition to all background (non-\(WW\)) graphs. The inclusion is done with the help of the YFSWW3 MC event generator for fully exclusive differential distributions (event per event). Technically, it is done in such a way that YFSWW3 runs concurrently with KoralW as a separate slave process, reading momenta of the MC event generated by KoralW and returning the correction weight to KoralW. The latter introduces the \(O(\alpha)\) correction using this weight, and finishes processing the event (rejection due to total MC weight, hadronization, etc.). The communication between KoralW and YFSWW3 is done with the help of the FIFO facility of the UNIX/Linux operating system. This does not require any modifications of the FORTRAN source codes. From the user’s point of view, the resulting Concurrent MC event generator KoralW\(\&\)YFSWW3 looks as a regular single MC event generator with all the standard features.

MSC:
81V22 Unified quantum theories
81-08 Computational methods for problems pertaining to quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jadach, S., Comput. phys. commun., 119, 272, (1999)
[2] Jadach, S., The Monte Carlo event generator version for W-pair production and decay at LEP2/LC energies, Comput. phys. commun., 140, 432, (2001), this issue · Zbl 1007.81067
[3] S. Jadach, G. Passarino, R. Pittau (Eds.), Reports of the Working Groups on Precision Calculations for LEP2 Physics, CERN 2000-009, Geneva, 2000
[4] Skrzypek, M.; Jadach, S.; Płaczek, W.; Wa̧s, Z., Comput. phys. commun., 94, 216, (1996)
[5] Skrzypek, M., Phys. lett. B, 372, 289, (1996)
[6] Skrzypek, M.; Wa̧s, Z., Comput. phys. commun., 125, 8, (2000)
[7] J. Fujimoto et al., GRACE User’s Manual, version 2.0, GRACE User’s Manual, version 2.0, MINAMI-TATEYA Collaboration
[8] Caravaglios, F.; Moretti, M., Z. phys. C, 74, 291, (1997)
[9] Accomando, E.; Ballestrero, A., Comput. phys. commun., 99, 270, (1997)
[10] van Oldenborgh, G.; Franzini, P.; Borrelli, A., Comput. phys. commun., 83, 14, (1994)
[11] Charlton, D.; Montagna, G.; Nicrosini, O.; Piccinini, F., Comput. phys. commun., 99, 355, (1997)
[12] Montagna, G., Eur. phys. J. C, 20, 217, (2001)
[13] Fujimoto, J., Comput. phys. commun., 100, 128, (1997)
[14] Pukhov, A., Comphep: A package for evaluation of Feynman diagrams and integration over multi-particle phase space, User’s manual for version 33, 1999
[15] Kanaki, A.; Papadopoulos, C.G., HELAC-PHEGAS: automatic computation of helicity amplitudes and cross sections, 2000
[16] Miquel, R.; Schmitt, M., Z. phys. C, 71, 251, (1996)
[17] Anlauf, H.; Manakos, P.; Ohl, T.; Dahmen, H., WOPPER, version 1.5: A Monte Carlo event generator for e+e−→(W+W−)→4f+Nγ at LEP-2 and beyond, 1996, IKDA-96-15
[18] Berends, F.A.; Papadopoulos, C.G.; Pittau, R., NEXTCALIBUR: A four-fermion generator for electron positron collisions, 2000 · Zbl 0983.81530
[19] Papadopoulos, C., Comput. phys. commun., 101, 183, (1997)
[20] Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L., Phys. rev. D, 54, 5434, (1996)
[21] Jadach, S., Phys. lett. B, 417, 326, (1998)
[22] Jadach, S., Phys. rev. D, 61, 113 010, (2000)
[23] Jadach, S., Precision predictions for (un)stable W+W− production at and beyond LEP2 energies, submitted to Phys. Lett. B
[24] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Nucl. phys. proc. suppl., 89, 100, (2000)
[25] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Nucl. phys. B, 587, 67, (2000)
[26] Fleischer, J.; Jegerlehner, F.; Zrałek, M., Z. phys. C, 42, 409, (1989)
[27] Kołodziej, K.; Zrałek, M., Phys. rev. D, 43, 3619, (1991)
[28] Fleischer, J.; Kołodziej, K.; Jegerlehner, F., Phys. rev. D, 47, 830, (1993)
[29] Fleischer, J.; Jegerlehner, F.; Kołodziej, K.; van Oldenborgh, G.J., Comput. phys. commun., 85, 29, (1995)
[30] M. Kobel et al., Two-fermion production in electron-positron collisions, in: Ref. [3], p. 269
[31] Groom, D.E., Eur. phys. J. C, 15, 1, (2000)
[32] Barberio, E.; van Eijk, B.; Wa̧s, Z., Comput. phys. commun., Comput. phys. commun., 79, 291, (1994)
[33] Chapovsky, A.P.; Khoze, V.A., Eur. phys. J. C, 9, 449, (1999)
[34] Ishikawa, T.; Kurichara, Y.; Skrzypek, M.; Wa̧s, Z., Eur. phys. J. C, 4, 75, (1998)
[35] Alberty, J., Perspectives for new detectors in future supercolliders, (), 170
[36] M. Grünewald et al., Four-fermion production in electron – positron collisions, in: Ref. [3], p. 1
[37] Jadach, S.; Ward, B.F.L.; Wa̧s, Z., Comput. phys. commun., 130, 260, (2000)
[38] Bardin, D.; Riemann, T.; Blümlein, J., Proceedings of the Zeuthen Workshop on Elementary Particle Theory — Physics at LEP200 and Beyond, Teuplitz, Germany, Nucl. phys. proc. suppl. B, 37, (1994)
[39] Jeżabek, M.; Wa̧s, Z.; Jadach, S.; Kühn, J.H., Comput. phys. commun., 70, 69, (1992)
[40] Decker, R.; Jadach, S.; Kühn, J.H.; Wa̧s, Z., Comput. phys. commun., 76, 361, (1993)
[41] Golonka, P.; Richter-Wa̧s, E.; Wa̧s, Z., The TAUOLA-PHOTOS-F environment for versioning the TAUOLA and PHOTOS packages
[42] Pierzchała, T.; Richter-Wa̧s, E.; Wa̧s, Z.; Worek, M., Acta phys. polon. B, 32, 1277, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.