×

zbMATH — the first resource for mathematics

Equazioni di Schrödinger e delle onde per l’operatore di Laplace iterato in \(L^ p (R^ n)\). (Italian) Zbl 0171.07702

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Bers, F. John, M. Schechter,Partial Differential Equations, Interscience, 1957.
[2] G. Da Prato,Semigruppi Regolarizzabili, Ricerche di Matematica XV (1966).
[3] E. Hille, R.S. Phillips,Functional analysis and semi-groups, Colloq. Publ. Amer. Math. Soc.31 (1957). · Zbl 0078.10004
[4] J.L. Lions,Une Remarque sur les applications du Théorème de Hille-Yosida, J. Math. Soc. Japan9 (1957). · Zbl 0078.08304
[5] – –,Les semi-groupes distributions, Portugaliae Math.19 (1960). · Zbl 0103.09001
[6] W. Littman,The Wawe operator and L^pNorms, J. Math. and Mech.19 (1960).
[7] J. Peetre,Sur la théorie des semi-groupes distriributions, Sém. sur les équations aux dérivées partielles, Coll. de France Nov. 1963, Mai 1964.
[8] F. Riesz, R. Nagy,Functional analysis, F. Ungar Pub. N.Y. (1955).
[9] Schwartz, L., Théorie des distributions (1951), Paris: Tomi I e II Hermann, Paris
[10] E. Whittaker, G.N. Watson,A Course of Modern Analysis, Cambridge Univ. Press. (1965). · JFM 45.0433.02
[11] K. Yosida,Functional Analysis, Springer, Verlag (1965). · Zbl 0126.11504
[12] A. Zygmund,Trigonometrical Series, Cambridge (1959). · Zbl 0011.01703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.