×

zbMATH — the first resource for mathematics

On a method of pseudo-random numbers generation. (English) Zbl 0171.16404

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] S. W. Golomb: Sequences with Randomness Properties. Glenn L. Martin Co., Baltimore, Md, June 14, 1955.
[2] D. C. J. Poortvliet: The Measurement of System Impulse Response by Cross-correlation with Binary Signals. Technical University, Delft 1962.
[3] W. W. Peterson: Error-Correcting Codes. M.I.T. Press, 1961 - Russian translation, Moskva 1964. · Zbl 0105.32802
[4] R. C. Tausworthe: Random Numbers Generated by Linear Recurrence Modulo Two. Math. of Computation 19 (Apr. 1965), 90, 201-209. · Zbl 0137.34804
[5] R. L. T. Hampton: A Hybrid Analog-Digital Pseudo-Random Noise Generator. Analog Hybrid Computer Laboratory, The University of Arizona, Tuscon, Arizona.
[6] Marolf R. A.: \(200\) Mbit/s Pseudo-Random Sequence Generators for very Wide Band Secure Communication Systems. Proc. Nat. Electron, Conf. Chicago III, (1963), 183- 187.
[7] Hampton L., Korn G. A., Mittchell B.: Hybrid Analog-Digital Random Noise Generation. IEEE Trans. on Electronic Comp. (1963), 412-413.
[8] C. Kramer: A Low Frequency Pseudo-Random Noise Generator. Electr. Eng. (1965), 465-467.
[9] Watson E. J.: Primitive Polynomials (mod 2). Mathematics of Computation XV (1962), 368-369. · Zbl 0101.25603
[10] J. Havel: Měnič pravděpodobnosti (Probability Transformer). Slaboproudý obzor 24 (1963), 2, 83-88.
[11] J. Havel: Elektronický generátor náhodných posloupností (An Electronic Generator of Random Sequences). Slaboproudý obzor 20 (1959), 12, 735-740.
[12] Huffman D. A.: The Synthesis of Linear Sequential Coding Networks. Proc. 3rd London Symp. on Inf. Theory. · Zbl 0152.35702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.