×

An algebra of pseudo-differential operators. (English) Zbl 0171.35101


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Existence and uniqueness theorems for systems of partial differential equations, Symposium on Fluid Dynamics, Univ. of Maryland, Inst. for Fluid Dynamics, 1961.
[2] Integrales singulares y sus applicaciones a ecuaciones diferenciales hiperbolicas, Cursos y seminorias de matematica, Fasc. 3, Univ. of Buenos Aires.
[3] Calderón, Amer. J. Math. 78 pp 289– (1956)
[4] Calderón, Amer. J. Math. 79 pp 901– (1957)
[5] Singular operators of arbitrary order on a manifold, Doklady Akad. Nauk, Vol. 141, 1961, pp. 21–23;
[6] Soviet Math. 2 pp 1375– (1961)
[7] and , Boundary value problems for first order operators, Comm. Pure Appl. Math., this issue.
[8] Gårding, Math. Scand. 1 pp 55– (1953) · Zbl 0053.39101
[9] Gohberg, Doklady Akad. Nauk 133 pp 1279– (1960)
[10] Soviet Math. 1 pp 960– (1960)
[11] Hörmander, Comm. Pure Appl. Math.
[12] The L2 operator calculus of Mikhlin, Calderón and Zygmund, Mimeographed lecture, New York Univ., Courant Inst. Math. Sci., 1963.
[13] Mikhlin, Uspehi Mat. Nauk 3 pp 29– (1948)
[14] Amer. Math. Soc. 24 (1950)
[15] Unicité du prolongemant des solutions pour quelques opérateurs différentiels paraboliques, Mem. College of Science Univ. of Kyoto, Ser. A, 31 (3), 1958, pp. 219–239.
[16] Elliptic partial differential equations of higher order, Lecture Notes No. 40, Univ. of Maryland, Inst. for Fluid Dynamics, 1962.
[17] Seeley, Amer. J. Math. 81 pp 658– (1959)
[18] Integro-differential operators on vector bundles, I, to appear.
[19] Unicité du problème de Cauchy, Seminaire Schwartz, Faculté des Sciences de Paris, 1959-1960.
[20] Weyl, Zeit. f. Physik 46 pp 1– (1927)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.