zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Floer homology groups in Yang-Mills theory. (English) Zbl 0998.53057
Cambridge Tracts in Mathematics. 147. Cambridge: Cambridge University Press. vii, 236 p. £ 50.00; $ 75.00 (2002).
The book is devoted to the concept of Floer homology and its applications in Yang-Mills theory. It originated from a series of seminars on this subject held in Oxford. The aim was to give a thorough exposition of Floer’s original work and to develop aspects of the theory which have not appeared in detail in literature before. It is emphasized that the Floer homology yields rigorously defined invariants of different manifolds which are viewed as homology groups of infinite-dimensional cycles. Also, it is argued that the ideas from Floer homology are intimately related to developments in quantum field theory. The first part of the book contains a presentation of the geometrical and analytical techniques in the context of gauge theory over 3- and 4-dimensional manifolds. The Yang-Mills theory is reviewed and the Floer homology groups are studied in details. The invariants for closed 4-manifolds are also summarised. In the second half of the book some further technical developments of the theory, mainly involving ideas from algebraic topology, are given. Reducible connections and the cup products, instanton solutions over 4-dimensional manifolds or the Floer homology of connected sums are presented in detail. Other topics like the Casson invariant of homology spheres, Floer’s exact surgery sequence or the links between Floer’s theory and the moduli spaces of flat connections over surfaces are not included in this book. However, in the final chapter, open problems are discussed and further developments are mentioned. The book is of a great interest for graduate students as well as for researches working on the frontiers of the subject.

53D40Floer homology and cohomology, symplectic aspects
53-02Research monographs (differential geometry)
81T13Yang-Mills and other gauge theories