zbMATH — the first resource for mathematics

A multipoint method of third order. (English) Zbl 0172.18703

Full Text: DOI
[1] Altman, M.,An Iterative Method for Solving Functional Equations, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques, et Physiques, Vol. 9, 1961.
[2] Collatz, L.,Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin, 1964. · Zbl 0139.09802
[3] Kantorovich, L. V., andAkilov, G. P.,Functional Analysis in Normed Spaces, The Macmillan Company, New York, 1964.
[4] Traub, J.,Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964. · Zbl 0121.11204
[5] Bosarge, W. E., Jr., andFalb, P. L.,Multipoint Methods and the Solution of Boundary Value Problems, Numerische Mathematik (to appear).
[6] Falb, P. L., andDejong, J. L.,Some Successive Approximation Methods in Control and Oscillation Theory, Academic Press, New York, 1969. · Zbl 0202.09603
[7] Ortega, J. M., andRheinboldt, W. C.,On Discretization and Differentiation of Operators with Application to Newton’s Method, SIAM Journal on Numerical Analysis, Vol. 3, No. 1, 1966. · Zbl 0143.17001
[8] Rall, L. B.,An Application of Newton’s Method to the Solution of a Nonlinear Integral Equation, US Army, Office of Ordnance Research, Contract No. DA-04-200-177, Technical Report No. 7, 1955.
[9] Chandrasekhar, S.,Radiative Transfer, Oxford Press, Oxford, England, 1950.
[10] Kalaba, R., Bellman, R., Kagiwada, H., andUeno, S.,Numerical Results for Chandrasekhar’s X and Y Functions of Radiative Transfer, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 6, 1966. · Zbl 0183.18303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.