zbMATH — the first resource for mathematics

Noether equations and conservation laws. (English) Zbl 0172.27803

Full Text: DOI
[1] Noether, E.: Invariante Variationsprobleme. Göttinger Nachr.1918, 235.
[2] Bessel-Hagen, E.: Über die Erhaltungssätze der Elektrodynamik. Math. Ann.84 258 (1921). · JFM 48.0877.02 · doi:10.1007/BF01459410
[3] Nomizu, K.: Lie groups and differential geometry. Publications of the Mathematical Society of Japan, No. 2 (1956). · Zbl 0071.15402
[4] Husemoller, D.: Fibre bundles. New York: McGraw-Hill 1966. · Zbl 0144.44804
[5] Ehresmann, C.: Les prolongements d’une variété différentiable. Atti d. IV Congresso dell’Unione Mat. Italiana, Taormina 1951, Ed. Cremonese, Rome 1953.
[6] Courant, R., andD. Hilbert: Methods of mathematical physics. Vol. I. New York: Interscience 1953. · Zbl 0051.28802
[7] Hill, E. L.: Hamilton’s principle and conservation theorems of mathematical physics. Revs. Mod. Phys.23 253 (1951). · Zbl 0044.38509 · doi:10.1103/RevModPhys.23.253
[8] Trautman, A.: Conservation laws in general relativity. In: Gravitation, ed. byL. Witten. New York: J. Wiley 1962.
[9] Bergmann, P. G.: Non-linear field theories. Phys. Rev.75 680 (1949). · Zbl 0039.23004 · doi:10.1103/PhysRev.75.680
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.