×

On approximate Schwarz differentiability. (English) Zbl 0173.05304


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Charzynski, Z.: Sur les fonctions dont la dérivée symétrique est partout finié. Fund. Math.21 (1933), p. 214. · Zbl 0008.34401
[2] Denjoy, A.: Sur les functions dérivées sommables, Bull. Soc. Math. France.43 (1915), pp. 161-248. · JFM 45.1286.01
[3] Denjoy, A.: Mémoire sur la totalisation des nombres dérivées nonsommables. Ann. Sci. Ecole. Norm. Sup. vol.33 (1916), p. 127.
[4] Goffman, C. andNeugebauer, C. J.: On approximate derivatives. Proc. Amer. Math. Soc. vol.11, No. 6 (1960), p. 962.
[5] Khintchine, A.: Recherches sur la structure des fonctions mesurables. Fund. Math. vol.9 (1927), p. 217. · JFM 53.0229.01
[6] Kozlovcev, S. G.: The connection between the Schwarz derivative and set derivative. Math. Sb. (N. S.),58 (100), (1962), p. 479. · Zbl 0116.04403
[7] Marcus, S.: On a paper by B. K. Lahiri. Bull. Cal. Math. Soc. vol.55, No. 3 (1963), p. 127. · Zbl 0144.24605
[8] Mathematical Reviews, vol.26, No. 4 (1963), 3834.
[9] Mazurkiewicz, S.: Sur la dérivée première généralisée Fund. Math.1 (1928), p. 145.
[10] Mukhopadhyay, S. N.: On Schwarz Differentiability ? I Forthcoming in Proc. Nat. Acad. Sc. India. · Zbl 0229.26007
[11] Mukhopadhyay, S. N.: On Schwarz Differentiability ? II Rev. Roum. Math. Pures et Appl. TomIX, No. 9 (1964), p. 859. · Zbl 0143.07401
[12] Mukhopadhyay, S. N.: On Schwarz Differentiability ? IV Acta Math. vol. XVII, 1966, in press. · Zbl 0143.07402
[13] Natanson, I. P.: Theory of functions of a real variable vol. II. New York 1960, p. 36. · Zbl 0091.05404
[14] Saks, S.: Theory of the integral, Warszawa-Lwow, 1937. · Zbl 0017.30004
[15] Sierpinski, W.: Sur une hypothèse de M. Mazurkiewicz. Fund. Math.9 (1928), p. 148.
[16] Szpilrajn, E.: Remarque sur la dérivée symétrique. Fund. Math.21 (1933), p. 226. · JFM 59.0288.02
[17] Tolstov, G.: Sur la dérivée approximative exacte. Rec. Math. (Math. Sbornik) (N. S.), vol.4 (1938), p. 499.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.