×

zbMATH — the first resource for mathematics

Remarks on integral inequalities on complex manifolds. (English) Zbl 0173.09203
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Andreotti - E. Vesentini , Carleman estimates for the Laplace-Belframi equatin on complex manifolds, Publications Mathématiques de l’Institut des Hautes Études Scientifiques , n^\circ 25 ( 1965 ), 81 - 130 ; Erraturn, ibd. n^\circ 27 , 153 - 155 . Numdam | MR 175148 | Zbl 0138.06604 · Zbl 0138.06604 · doi:10.1007/BF02684398 · numdam:PMIHES_1965__25__81_0 · numdam:PMIHES_1965__27__153_0 · eudml:103855
[2] M.P. Gaffney , A special Stokes’s theorem for complete riemannian manifolds , Ann. of Math. , 60 ( 1954 ), 140 - 145 . MR 62490 | Zbl 0055.40301 · Zbl 0055.40301 · doi:10.2307/1969703
[3] L. Hörmander , L2 estimates and existence theorems for the \delta -operator , Acta Mathematica 113 ( 1965 ), 89 - 152 . Zbl 0158.11002 · Zbl 0158.11002 · doi:10.1007/BF02391775
[4] S. Kobayashi , Geometry of bounded domains , Trans. Amer. Math. Soc. , 92 ( 1959 ), 267 - 290 . MR 112162 | Zbl 0136.07102 · Zbl 0136.07102 · doi:10.2307/1993156
[5] E. Vesentini , Levi convexity of complex manifolds and cohomology vanishing theorems Lecture notes , Tata Institute of fundamental Research (to appear). MR 232016 | Zbl 0206.36603 · Zbl 0206.36603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.