The stable, center-stable, center, center-unstable, unstable manifolds. (English) Zbl 0173.11001


34Cxx Qualitative theory for ordinary differential equations
37C10 Dynamics induced by flows and semiflows


Zbl 0163.32804
Full Text: DOI HAL


[1] Coddington, E.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0064.33002
[2] Bogoliubov, N.; Mitropolsky, Y., Asymptotic Methods in the Theory of Non-linear Oscillations (1961), Gordon and Breach: Gordon and Breach New York · Zbl 0151.12201
[3] Diliberto, S. P., Perturbation theorems for periodic surfaces, Rend. Circ. Mat. Palermo, 10, 1-51 (1961) · Zbl 0109.31401
[4] Hale, J., On the method of Krylov-Bogoliubov-Mitropolski for the existence of integral manifolds of perturbed differential systems, (Symposium Internacional de Ecuaciones Diferenciales Ordinarias (1961), University of Mexico), 51-57 · Zbl 0121.07403
[5] Hale, J., Integral manifolds of perturbed differential systems, Ann. Math., 73, 496-531 (1961) · Zbl 0163.32804
[6] Krylov, N.; Bogoliubov, N., The application of methods of nonlinear mechanics to the theory of stationary oscillations, (Publication No. 8 of the Ukrainian Academy of Science (1934)), (in Russian) · Zbl 0063.03382
[7] Levinson, N., Small periodic perturbations of an autonomous system with a stable orbit, Ann. Math., 52, 727-738 (1950) · Zbl 0038.24903
[8] Sacker, R. J., A new approach to the perturbation theory of invariant surfaces, Commun Pure Appl. Math., 18, 717-732 (1965) · Zbl 0133.35501
[9] Kelley, A., On the Liapounov subcenter manifold, J. Math. Anal. Appl., 18, 472-478 (1967) · Zbl 0155.14103
[10] LaVita, J.in; LaVita, J.in
[11] Liapounov, A., Probleme General de la Stabilite du Mouvement, (Annals of Mathematical Studies, Vol. 17 (1949), Princeton University Press: Princeton University Press Princeton, New Jersey), 375-392
[12] Siegel, C. L., Vorlesungen uber Himmelsmechanik, ((1956), Springer: Springer Berlin), 82-92 · Zbl 0098.23601
[13] Lykova, O., On the question of stability of solutions of systems of nonlinear differential equations, Ukrain. Mat. Zh., 11, 251-255 (1959), (in Russian) · Zbl 0087.29702
[14] Lykova, O., Investigation of the solutions of nonlinear systems close to integrable systems by using the method of integral manifolds, (Proceedings of the International Symposium on Nonlinear Oscillations, Vol. I (1963), Akademii Nauk U.S.S.R: Akademii Nauk U.S.S.R Kiev), 315-323, (in Russian) · Zbl 0207.38903
[15] Chen, K. T.; Chen, K. T.
[16] Pliss, V. A., Principal reduction in the theory of the stability of motion, Izv. Akad. Nauk · Zbl 0131.31505
[17] Kelley, A., The center manifold and integral manifolds for Hamiltonian systems, Notices Am. Math. Soc., 12, 143-144 (1965)
[18] Kelley, A., Stability of the center-stable manifold, J. Math. Anal. Appl., 18, 336-344 (1967) · Zbl 0166.08304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.