×

Remarks on the perturbation and a topology for operators. (English) Zbl 0174.44405


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apostol, C., Sur les opérateurs scalaires généralisés, Bull. Sci. Math., 91, 57-61 (1967) · Zbl 0156.15302
[2] Apostol, C., Roots of decomposable operator-valued analytic functions, Rev. Roum. Math. Pures Appl., 13 (1968), (to appear in No. 4) · Zbl 0161.34902
[3] Colojoară, I.; Foiaş, C., Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math. Mech., 15, 521-540 (1965) · Zbl 0138.07701
[4] Colojoară, I.; Foiaş, C., The Riesz-Dunford functional calculus with decomposable operators, Rev. Roum. Math. Pures Appl., 12, 627-641 (1967) · Zbl 0154.16004
[5] Colojoară, I. and Foiaş, C.; Colojoară, I. and Foiaş, C.
[6] Dunford, N., Spectral operators, Pacific J. Math., 4, 321-354 (1954) · Zbl 0056.34601
[7] Dunford, N., A survey of the theory of spectral operators, Bull. Am. Math. Soc., 64, 217-274 (1958) · Zbl 0088.32102
[8] Dunford, N.; Schwartz, J. T., (Linear Operators, Vol. I (1958), Interscience: Interscience New York) · Zbl 0084.10402
[9] Foiaş, C., Spectral maximal spaces and decomposable operators in a Banach space, Arhiv. Math., 14, 341-349 (1963) · Zbl 0176.43802
[10] Kantorovitz, S., Classification of operators by means of their functional calculus, Trans. Am. Math. Soc., 15, 194-224 (1965) · Zbl 0127.07801
[11] Schwartz, J. T., Two perturbation formulae, Commun. Pure Appl. Math., 8, 371-376 (1955) · Zbl 0065.10501
[12] Vasilescu, F. H., On an asymptotic behaviour of operators, Rev. Roum. Math. Pures Appl., 12, 353-358 (1967) · Zbl 0145.39202
[13] Vasilescu, F. H., Spectral distance of two operators, Rev. Roum. Math. Pures Appl., 12, 733-736 (1967) · Zbl 0156.38204
[14] Dinculeanu, N.; Kluvanek, J., On vector measures, (Proc. London Math. Soc., 17 (1967)), 505-512 · Zbl 0195.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.