Kirillov, A. A. The characters of unitary representations of Lie groups. (English. Russian original) Zbl 0174.45001 Funct. Anal. Appl. 2, 133-146 (1968); translation from Funkts. Anal. Prilozh. 2, No. 2, 40-55 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 30 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{A. A. Kirillov}, Funct. Anal. Appl. 2, 133--146 (1968; Zbl 0174.45001); translation from Funkts. Anal. Prilozh. 2, No. 2, 40--55 (1968) Full Text: DOI OpenURL References: [1] I. M. Gel’fand, ”The center of the infinitesimal group ring,” Mat. Sb.,26, 103-112 (1950). [2] A. A. Kirillov, ”Unitary representations of nilpotent Lie groups,” Uspekhi Mat. Nauk,17, No. 4, 57-101 (1962). · Zbl 0106.25001 [3] A. A. Kirillov, ”The method of orbits in the theory of unitary representations of Lie groups,” Funktsional. Analiz i Ego Prilozhen.,2, No. 1, 96-98 (1968). · Zbl 0194.33804 [4] A. A. Kirillov, ”The Plancherel measure for nilpotent Lie groups,” Funktsional. Analiz i Ego Prilozhen.,1, No. 4, 84-85 (1967). · Zbl 0167.43703 [5] L. S. Pontryagin, Continuous Groups [in Russian], Gostekhizdat, Moscow (1954). · Zbl 0058.26003 [6] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962). · Zbl 0111.18101 [7] G. W. Mackey, ”Infinite-dimensional representations of groups,” Matematika, 6:6, 57-103 (1962). [8] G. W. Mackey, ”Induced representations of locally compact groups. I,” Ann. Math.,55, 101-139 (1952). · Zbl 0046.11601 [9] I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Nonself-adjoint Linear Operators [in Russian], ”Nauka,” Moscow (1965). [10] M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin (1958). · Zbl 0082.10603 [11] F. A. Berezin, ”Laplace operators on semisimple Lie groups,” Trudy Mosk. Matem. Obshch.,6, 371-463 (1957). · Zbl 0091.28201 [12] A. Borel and F. Hirzebruch, ”Characteristic classes and homogeneous spaces, I, II,” Amer. J. Math.,80, No. 2, 458-538 (1958);81, No. 2, 315-382 (1959). · Zbl 0097.36401 [13] E. B. Dynkin and A. L. Onishchik, ”Compact global Lie groups,” Uspekhi Mat. Nauk,10, No. 4, 3-74 (1955). · Zbl 0065.26201 [14] Harish-Chandra, ”Differential operators on a semisimple Lie algebra,” Amer. J. Math.,79, No. 1, 87-120 (1957). · Zbl 0072.01901 [15] The Theory of Lie Algebras. The Topology of Lie Groups [Russian translation], IL, Moscow (1962). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.