×

zbMATH — the first resource for mathematics

The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. (English) Zbl 0175.02703

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber├╝cksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). · Zbl 0145.26001
[2] Hans Freudenthal, Beziehungen der \?\(_{7}\) und \?\(_{8}\) zur Oktavenebene. I, Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indagationes Math. 16 (1954), 218 – 230 (German). · Zbl 0055.02001
[3] -, Beziehungen der \( {E_7}\) und \( {E_8}\) zur Oktavenebene. VIII, Nederl. Akad. Wetensch. Proc. Ser. A 62 (1959), 447-465.
[4] Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. · Zbl 0218.17010
[5] Kevin McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072 – 1079. · Zbl 0139.25502
[6] Kevin McCrimmon, Generically algebraic algebras, Trans. Amer. Math. Soc. 127 (1967), 527 – 551. · Zbl 0153.05801
[7] K. McCrimmon, Norms and noncommutative Jordan algebras, Pacific J. Math. 15 (1965), 925 – 956. · Zbl 0139.25501
[8] T. A. Springer, Characterization of a class of cubic forms, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 259 – 265. · Zbl 0108.03302
[9] J. Tits, The complete unpublished works of J. Tits.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.